Solar and Stellar Astrophysics (astro-ph.SR)
Browse by
Recent Submissions
-
Linear and non-linear models for large-amplitude radial pulsation in faint blue stars (BLAPs)The recent discovery of large-amplitude pulsations in faint blue stars (BLAPs) provides both challenges for stellar pulsation theory and opportunities to explore the late evolution of low-mass stars. This paper explores the radial-mode stability of stars across parameter space occupied by BLAPs. Models are constructed for homogeneous stellar envelopes and are agnostic of evolution. Linear non-adiabatic models demonstrate the major requirement for pulsations to be enrichment of iron and nickel in the driving zone to a few times the solar abundance. There is no constraint on mass. Non-linear models demonstrate that BLAP pulsations will be of large amplitude and will show strong shocks at minimum radius. A variety of light-curve shapes are found across the BLAP instability strip, accounting for the variety observed. Linearised period relations are derived from the non-linear models. The phase of maximum luminosity relative to minimum radius is correlated with effective temperature ( T<SUB>eff</SUB>), preceding for cool stars and following for hot stars, and split if close to minimum radius. In both linear and non-linear cases, most models pulsate in the fundamental mode (F). First-overtone (1H) pulsations are excited on the low luminosity blue side of the instability region and become more prevalent at higher mass. The period ratio P<SUB>1H</SUB>/P<SUB>F</SUB> = 0.81 contrasts with the classical Cepheid value (0.70 - 0.75). The transition from F to 1H mode pulsations follows a period-mass relation; the F-mode pulsators adjacent to the transition show a reverse shock. At high T<SUB>eff</SUB> some non-linear models show unstable overtone modes up to 5H and multi-mode behaviour. The linear and non-linear analyses concur on the red-edge of the instability region, but the non-linear blue edge is hotter.
-
Stellar X-Ray Variability and Planetary Evolution in the DS Tucanae SystemWe present an analysis of four Chandra observations of the 45 Myr old DS Tuc binary system. We observed X-ray variability of both stars on timescales from hours to months, including two strong X-ray flares from star A. The implied flaring rates are in agreement with past observations made with XMM-Newton, though these rates remain imprecise due to the relatively short total observation time. We find a clear, monotonic decline in the quiescent level of the star by a factor of 1.8 across 8 months, suggesting stellar variability that might be due to an activity cycle. If proven through future observations, DS Tuc A would be the youngest star for which a coronal activity cycle has been confirmed. The variation in our flux measurements across the four visits is also consistent with the scatter in empirical stellar X-ray relationships with Rossby number. In simulations of the possible evolution of the currently super-Neptune-sized planet DS Tuc A b, we find a range of scenarios for the planet once it reaches a typical field age of 5 Gyr, from Neptune size down to a completely stripped super-Earth. Improved constraints on the planet's mass in the future would significantly narrow these possibilities. We advocate for further Chandra observations to better constrain the variability of this important system.
-
X-Shooting ULLYSES: Massive stars at low metallicity: X. Physical parameters and feedback of massive stars in the LMC N11 B star-forming regionMassive stars drive the ionization and mechanical feedback within young star-forming regions. The Large Magellanic Cloud (LMC) is an ideal galaxy for studying individual massive stars and quantifying their feedback contribution to the environment. We analyze eight exemplary targets in LMC N11 B from the Hubble UV Legacy Library of Young Stars as Essential Standards (ULLYSES) program using novel spectra from HST (COS and STIS) in the UV, and from VLT (X-shooter) in the optical. We model the spectra of early to late O-type stars using state-of-the-art PoWR atmosphere models. We determine the stellar and wind parameters (e.g., T<SUB>⋆</SUB>, log g, L<SUB>⋆</SUB>, Ṁ, and v<SUB>∞</SUB>) of the analyzed objects, chemical abundances (C, N, and O), ionizing and mechanical feedback (Q<SUB>H</SUB>, Q<SUB>HeI</SUB>, Q<SUB>He II</SUB>, and L<SUB>mec</SUB>), and X-rays. We report ages of 2–4.5 Myr and masses of 30–60 M<SUB>⊙</SUB> for the analyzed stars in N11 B, which are consistent with a scenario of sequential star formation. We note that the observed wind-momentum–luminosity relation is consistent with theoretical predictions. We detect nitrogen enrichment by up to a factor of seven in most of the stars. However, we do not find a correlation between nitrogen enrichment and projected rotational velocity. Finally, based on their spectral type, we estimate the total ionizing photons injected from the O-type stars in N11 B into its environment. We report log (Σ Q<SUB>H</SUB>) = 50.5 ph s<SUP>‑1</SUP>, log (Σ Q<SUB>He I</SUB>) = 49.6 ph s<SUP>‑1</SUP>, and log (Σ Q<SUB>He II</SUB>)= 44.4 ph s<SUP>‑1</SUP>, consistent with the total ionizing budget in N11.
-
Discovery of Metal-poor and Distant Pre–Main Sequence Candidates in WLM with JWSTWe present the discovery of 12 metal-poor and distant pre–main sequence (PMS) candidates in the dwarf irregular galaxy Wolf–Lundmark–Melotte ∼968 kpc away, at a present-day metallicity of [Fe/H] ∼ –0.9. These candidates have masses between 1.25 and 5 M<SUB>⊙</SUB>, with ages <10 Myr, and exhibit significant near-infrared excesses at 2.5 and 4.3 μm. They are concentrated within a cluster roughly 10 pc (2″) across, situated in the H II region [HM95]-9. These are the most distant and metal-poor PMS stars known, and they can offer new quantitative insights into star formation at low metallicities.
-
Optical evolution of AT 2024wpp: the high-velocity outflows in Cow-like transients are consistent with high spherical symmetryWe present the analysis of optical/near-infrared (NIR) data and host galaxy properties of a bright, extremely rapidly evolving transient, AT 2024wpp, which resembles the enigmatic AT 2018cow. AT 2024wpp rose to a peak brightness of <inline-formula><tex-math id=TM0001 notation=LaTeX>$c=-21.9$</tex-math></inline-formula> mag in 4.3 d and remained above the half-maximum brightness for only 6.7 d. The blackbody fits to the photometry show that the event remained persistently hot (<inline-formula><tex-math id=TM0002 notation=LaTeX>$T\gtrsim 20\, 000$</tex-math></inline-formula> K) with a rapidly receding photosphere (<inline-formula><tex-math id=TM0003 notation=LaTeX>$v\sim 11\, 500$</tex-math></inline-formula> km s<inline-formula><tex-math id=TM0004 notation=LaTeX>$^{-1}$</tex-math></inline-formula>), similarly to AT 2018cow albeit with a several times larger photosphere. <inline-formula><tex-math id=TM0005 notation=LaTeX>$JH$</tex-math></inline-formula> photometry reveals an NIR excess over the thermal emission at <inline-formula><tex-math id=TM0006 notation=LaTeX>$\sim +20$</tex-math></inline-formula> d, indicating a presence of an additional component. The spectra are consistent with blackbody emission throughout our spectral sequence ending at <inline-formula><tex-math id=TM0007 notation=LaTeX>$+21.9$</tex-math></inline-formula> d, showing a tentative, very broad emission feature at <inline-formula><tex-math id=TM0008 notation=LaTeX>$\sim 5500$</tex-math></inline-formula> Å - implying that the optical photosphere is likely within a near-relativistic outflow. Furthermore, reports of strong X-ray and radio emission cement the nature of AT 2024wpp as a likely Cow-like transient. AT 2024wpp is the second event of the class with optical polarimetry. Our <inline-formula><tex-math id=TM0009 notation=LaTeX>$BVRI$</tex-math></inline-formula> observations obtained from <inline-formula><tex-math id=TM0010 notation=LaTeX>$+6.1$</tex-math></inline-formula> to <inline-formula><tex-math id=TM0011 notation=LaTeX>$+14.4$</tex-math></inline-formula> d show a low polarization of <inline-formula><tex-math id=TM0012 notation=LaTeX>$P\lesssim 0.5$</tex-math></inline-formula> per cent across all bands, similar to AT 2018cow that was consistent with <inline-formula><tex-math id=TM0013 notation=LaTeX>$P\sim 0$</tex-math></inline-formula> per cent during the same outflow-driven phase. In the absence of evidence for a preferential viewing angle, it is unlikely that both events would have shown low polarization in the case that their photospheres were aspherical. As such, we conclude that the near-relativistic outflows launched in these events are likely highly spherical, but polarimetric observations of further events are crucial to constrain their ejecta geometry and stratification in detail.
-
A search for close binary systems in the SALT survey of hydrogen-deficient stars using TESSThe TESS periodograms of the SALT survey catalogue of hydrogen-deficient stars were searched for evidence of short-period variability. Periodic light-curve variations were identified in 16 stars out of 153 catalogue objects, of which 10 were false positives. From the remaining 6 identified variables, Ton S 415 is a known close binary system and the sixth close binary containing a hydrogen-deficient hot subdwarf. Radial velocity and SED analyses ruled out the remaining 5 as close binary systems; the causes of their variability remain uncertain. With one or more K-type companions, BPS CS 22956-0094 may be a wide binary or triple. From this SALT + TESS sample, the fraction of close binaries stands at <inline-formula><tex-math id=TM0001 notation=LaTeX>$1/29 \approx 3.5~{{\ \rm per\ cent}}$</tex-math></inline-formula> for intermediate helium hot subdwarfs and <inline-formula><tex-math id=TM0002 notation=LaTeX>$0/124 = 0~{{\ \rm per\ cent}}$</tex-math></inline-formula> for extreme helium subdwarfs.
-
The PLATO field selection process: II. Characterization of LOPS2, the first long-pointing fieldPLAnetary Transits and Oscillations of stars (PLATO) is an ESA M-class mission to be launched by the end of 2026 to discover and characterize transiting planets around bright and nearby stars, and in particular habitable rocky planets hosted by solar-like stars. Over the mission lifetime, an average of 8% of the science data rate will be allocated to Guest Observer programs selected by ESA through public calls. Hence, it is essential for the community to know in advance where the observing fields will be located. In a previous paper, we identified two preliminary long-pointing fields (LOPN1 and LOPS1) for PLATO, respectively in the northern and southern hemispheres. Here we present LOPS2, a slightly adjusted version of the southern field that has recently been selected by the PLATO Science Working Team as the first field to be observed by PLATO for at least two continuous years, following the scientific requirements. In this paper, we describe the astrophysical content of LOPS2 in detail, including known planetary systems, bright stars, variables, binary stars, star clusters, and synergies with other current and future facilities.
-
NGTS-33b: a young super-Jupiter hosted by a fast-rotating massive hot starIn the last few decades, planet search surveys have been focusing on solar-type stars, and only recently the high-mass regimes. This is mostly due to challenges arising from the lack of instrumental precision, and more importantly, the inherent active nature of fast-rotating massive stars. Here, we report NGTS-33b (TOI-6442b), a super-Jupiter planet with mass, radius, and orbital period of 3.6 <inline-formula><tex-math id=TM0001 notation=LaTeX>$\pm$</tex-math></inline-formula> 0.3 M<inline-formula><tex-math id=TM0002 notation=LaTeX>$_{\rm J}$</tex-math></inline-formula>, 1.64 <inline-formula><tex-math id=TM0003 notation=LaTeX>$\pm$</tex-math></inline-formula> 0.07 R<inline-formula><tex-math id=TM0004 notation=LaTeX>$_{\rm J}$</tex-math></inline-formula>, and <inline-formula><tex-math id=TM0005 notation=LaTeX>$2.827\,972 \pm 0.000\,001$</tex-math></inline-formula> d, respectively. The host is a fast-rotating (<inline-formula><tex-math id=TM0006 notation=LaTeX>$0.6654 \pm 0.0006$</tex-math></inline-formula> d) and hot (T<inline-formula><tex-math id=TM0007 notation=LaTeX>$_{\rm eff}$</tex-math></inline-formula> = 7437 <inline-formula><tex-math id=TM0008 notation=LaTeX>$\pm$</tex-math></inline-formula> 72 K) A9V type star, with a mass and radius of 1.60 <inline-formula><tex-math id=TM0009 notation=LaTeX>$\pm$</tex-math></inline-formula> 0.11 M<inline-formula><tex-math id=TM0010 notation=LaTeX>$_{\odot }$</tex-math></inline-formula> and 1.47 <inline-formula><tex-math id=TM0011 notation=LaTeX>$\pm$</tex-math></inline-formula> 0.06 R<inline-formula><tex-math id=TM0012 notation=LaTeX>$_{\odot }$</tex-math></inline-formula>, respectively. Planet structure and gyrochronology models show that NGTS-33 is also very young with age limits of 10-50 Myr. In addition, membership analysis points towards the star being part of the Vela OB2 association, which has an age of <inline-formula><tex-math id=TM0013 notation=LaTeX>$\sim$</tex-math></inline-formula> 20-35 Myr, thus providing further evidence about the young nature of NGTS-33. Its low bulk density of 0.19<inline-formula><tex-math id=TM0014 notation=LaTeX>$\pm$</tex-math></inline-formula>0.03 g cm<inline-formula><tex-math id=TM0015 notation=LaTeX>$^{-3}$</tex-math></inline-formula> is 13 per cent smaller than expected when compared to transiting hot Jupiters (HJs) with similar masses. Such cannot be solely explained by its age, where an up to 15 per cent inflated atmosphere is expected from planet structure models. Finally, we found that its emission spectroscopy metric is similar to JWST community targets, making the planet an interesting target for atmospheric follow-up. Therefore, NGTS-33b's discovery will not only add to the scarce population of young, massive and HJs, but will also help place further strong constraints on current formation and evolution models for such planetary systems.
-
A Tale of Three: Magnetic Fields along the Orion Integral-shaped Filament as Revealed by the JCMT BISTRO SurveyAs part of the B-fields In Star-forming Region Observations survey, we present James Clerk Maxwell Telescope (JCMT) 850 μm polarimetric observations toward the Orion integral-shaped filament (ISF) that covers three portions known as OMC-1, OMC-2, and OMC-3. The magnetic field threading the ISF seen in the JCMT POL-2 map appears as a tale of three: pinched for OMC-1, twisted for OMC-2, and nearly uniform for OMC-3. A multiscale analysis shows that the magnetic field structure in OMC-3 is very consistent at all the scales, whereas the field structure in OMC-2 shows no correlation across different scales. In OMC-1, the field retains its mean orientation from large to small scales but shows some deviations at small scales. Histograms of relative orientations between the magnetic field and filaments reveal a bimodal distribution for OMC-1, a relatively random distribution for OMC-2, and a distribution with a predominant peak at 90<SUP>∘</SUP> for OMC-3. Furthermore, the magnetic fields in OMC-1 and OMC-3 both appear to be aligned perpendicular to the fibers, which are denser structures within the filament, but the field in OMC-2 is aligned along with the fibers. All these suggest that gravity, turbulence, and magnetic field are each playing a leading role in OMC-1, 2, and 3, respectively. While OMC-2 and 3 have almost the same gas mass, density, and nonthermal velocity dispersion, there are on average younger and fewer young stellar objects in OMC-3, providing evidence that a stronger magnetic field will induce slower and less efficient star formation in molecular clouds.
-
ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Nested Morphological and Kinematic Structures of Outflows Revealed in SiO and CO EmissionThe Atacama Large Millimeter/submillimeter Array Survey of Orion Planck Galactic Cold Clumps (ALMASOP) reveals complex nested morphological and kinematic features of molecular outflows through the CO (J = 2‑1) and SiO (J = 5‑4) emission. We characterize the jet and outflow kinematics of the ALMASOP sample in four representative sources (HOPS 10, 315, 358, and G203.21-11.20W2) through channel maps and position–velocity diagrams (PVDs) parallel and transverse to the outflow axes. The combined CO and SiO emission exhibits the coexistence of the conventional extremely high-velocity jets and shell-like low-velocity cavity walls and new features. More complex, nested bubble-like and filamentary structures in the images and channel maps, triangle-shaped regions near the base of the parallel PVDs, and regions composed of rhombus/oval shapes in the transverse PVDs are also evident. Such features find natural explanations within the bubble structure of the unified model of jet, wind, and ambient medium. The reverse shock cavity is revealed on the PVD base regions, and other features naturally arise within the dynamic postshock region of magnetic interaction. The finer nested shells observed within the compressed wind region reveal previously unnoticed shocked emission between the jet and the conventional large cavity walls. These pseudopulse-produced filamentary features connect to the jetlike knotty blobs, creating an impression of episodicity in mass ejection. SiO emission is enhanced downstream of the reverse shock boundary, with jetlike excitation conditions. Combined, these observed features reveal the extended structures induced by the magnetic interplay between a jet-bearing magnetized wide-angle wind and its ambient magnetized surrounding medium.
-
Strong magnetic fields of old white dwarfs are symmetric about the stellar rotation axesMany magnetic white dwarfs exhibit a polarised spectrum that periodically varies as the star rotates because the magnetic field is not symmetric about the rotation axis. In this work, we report the discovery that while weakly magnetic white dwarfs of all ages with M ≤ 1 M<SUB>⊙</SUB> show polarimetric variability with a period between hours and several days, the large majority of magnetic white dwarfs in the same mass range with cooling ages older than 2 Gyr and field strengths ≥ 10 MG show little or no polarimetric variability. This could be interpreted as extremely slow rotation, but a lack of known white dwarfs with measured periods longer than two weeks means that we do not see white dwarfs slowing their rotation. We therefore suggest a different interpretation: old strongly magnetic white dwarfs do not vary because their fields are roughly symmetric about the rotation axes. Symmetry may either be a consequence of field evolution or a physical characteristic intrinsic to the way strong fields are generated in older stars. Specifically, a strong magnetic field could distort the shape of a star, forcing the principal axis of maximum inertia away from the spin axis. Eventually, as a result of energy dissipation, the magnetic axis will align with the angular momentum axis. We also find that the higher-mass strongly magnetised white dwarfs, which are likely the products of the merging of two white dwarfs, may appear as either polarimetrically variable or constant. This may be the symptom of two different formation channels or the consequence of the fact that a dynamo operating during a merger may produce diverse magnetic configurations. Alternatively, the massive white dwarfs with constant polarisation may be rotating with periods much shorter than the typical exposure times of the observations.
-
X-Shooting ULLYSES: Massive stars at low metallicity: VII. Stellar and wind properties of B supergiants in the Small Magellanic CloudContext. With the aim of understanding massive stars and their feedback in the early epochs of our Universe, the ULLYSES and XShootU collaborations collected the biggest homogeneous dataset of high-quality hot star spectra at low metallicity. Within the rich zoo of massive star stellar types, B supergiants (BSGs) represent an important connection between the main sequence and more extreme evolutionary stages. Additionally, lying toward the cool end of the hot star regime, determining their wind properties is crucial to gauging our expectations on the evolution and feedback of massive stars as, for instance, they are implicated in the bi-stability jump phenomenon. Aims. Here, we undertake a detailed analysis of a representative sample of 18 Small Magellanic Cloud (SMC) BSGs within the ULLYSES dataset. Our UV and optical analysis samples early- and late-type BSGs (from B0 to B8), covering the bi-stability jump region. Our aim is to evaluate their evolutionary status and verify what their wind properties say about the bi-stability jump at a low-metallicity environment. Methods. We used the stellar atmosphere code CMFGEN to model the UV and optical spectra of the sample BSGs as well as photometry in different bands. The optical range encodes photospheric properties, while the wind information resides mostly in the UV. Further, we compare our results with different evolutionary models, with previous determinations in the literature of OB stars, and with diverging mass-loss prescriptions at the bi-stability jump. Additionally, for the first time we provide BSG models in the SMC including X-rays. Results. Our analysis yielded the following main results: (i) From a single-stellar evolution perspective, the evolutionary status of early BSGs appear less clear than late BSGs, which are agree reasonably well with H-shell burning models. (ii) Ultraviolet analysis shows evidence that the BSGs contain X-rays in their atmospheres, for which we provide constraints. In general, higher X-ray luminosity (close to the standard log(L<SUB>X</SUB>/L) ~ ‑7) is favored for early BSGs, despite associated degeneracies. For later-type BSGs, lower values are preferred, log(L<SUB>X</SUB>/L) ~ ‑8.5. (iii) The obtained mass-loss rates suggest neither a jump nor an unperturbed monotonic decrease with temperature. Instead, a rather constant trend appears to happen, which is at odds with the increase found for Galactic BSGs. (iv) The wind velocity behavior with temperature shows a sharp drop at ~19 kK, very similar to the bi-stability jump observed for Galactic stars.
-
Stellar expansion or inflation?While stellar expansion after core-hydrogen exhaustion related to thermal imbalance has been documented for decades, the physical phenomenon of stellar inflation that occurs close to the Eddington limit has only come to the fore in recent years. We aim to elucidate the differences between these physical mechanisms for stellar radius enlargement, especially given that additional terms such as 'bloated' and 'puffed-up' stars have been introduced in the recent massive star literature. We employ single and binary star MESA structure and evolution models for constant mass, as well as models allowing the mass to change due to winds or binary interaction. We find cases that were previously attributed to stellar inflation in fact to be due to stellar expansion. We also highlight that while the opposite effect of expansion is contraction, the removal of an inflated zone should not be referred to as contraction but rather deflation, as the star is still in thermal balance.
-
Cataclysmic Variables and AM CVn Binaries in SRG/eROSITA + Gaia: Volume Limited Samples, X-Ray Luminosity Functions, and Space DensitiesWe present volume-limited samples of cataclysmic variables (CVs) and AM CVn binaries jointly selected from SRG/eROSITA eRASS1 and Gaia DR3 using an X-ray + optical color–color diagram (the X-ray Main Sequence). This tool identifies all CV subtypes, including magnetic and low-accretion rate systems, in contrast to most previous surveys. We find 23 CVs, 3 of which are AM CVns, out to 150 pc in the Western Galactic Hemisphere. Our 150 pc sample is spectroscopically verified and complete down to L<SUB>X</SUB> = 1.3 × 10<SUP>29</SUP> erg s<SUP>‑1</SUP> in the 0.2–2.3 keV band, and we also present CV candidates out to 300 pc and 1000 pc. We discovered two previously unknown systems in our 150 pc sample: the third nearest AM CVn and a magnetic period bouncer. We find the mean L<SUB>X</SUB> of CVs to be <L<SUB>X</SUB>> ≈ 4.6 × 10<SUP>30</SUP> erg s<SUP>‑1</SUP>, in contrast to previous surveys which yielded <L<SUB>X</SUB>> ∼ 10<SUP>31</SUP>‑10<SUP>32</SUP> erg s<SUP>‑1</SUP>. We construct X-ray luminosity functions that, for the first time, flatten out at L<SUB>X</SUB> ∼ 10<SUP>30</SUP> erg s<SUP>‑1</SUP>. We infer average number, mass, and luminosity densities of ρ<SUB>N,CV</SUB> = (3.7 ± 0.7) × 10<SUP>‑6</SUP>pc<SUP>‑3</SUP>, <inline-formula> <mml:math overflow=scroll><mml:msub><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy=false>(</mml:mo><mml:mn>5.0</mml:mn><mml:mo>±</mml:mo><mml:mn>1.0</mml:mn><mml:mo stretchy=false>)</mml:mo><mml:mo>×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:msubsup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mo>⊙</mml:mo></mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:math> </inline-formula>, and <inline-formula> <mml:math overflow=scroll><mml:msub><mml:mi>ρ</mml:mi><mml:msub><mml:mi>L</mml:mi><mml:mi mathvariant=normal>X</mml:mi></mml:msub></mml:msub><mml:mo>=</mml:mo><mml:mo stretchy=false>(</mml:mo><mml:mn>2.3</mml:mn><mml:mo>±</mml:mo><mml:mn>0.4</mml:mn><mml:mo stretchy=false>)</mml:mo><mml:mo>×</mml:mo><mml:mn>1</mml:mn><mml:msup><mml:mn>0</mml:mn><mml:mn>26</mml:mn></mml:msup><mml:mspace width=0.25em></mml:mspace><mml:mi>erg</mml:mi><mml:mspace width=0.25em></mml:mspace><mml:msup><mml:mi mathvariant=normal>s</mml:mi><mml:mrow><mml:mo>‑</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:msubsup><mml:mi>M</mml:mi><mml:mo>⊙</mml:mo><mml:mrow><mml:mo>‑</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup></mml:math> </inline-formula>, respectively, in the solar neighborhood. Our uniform selection method also allows us to place meaningful estimates on the space density of AM CVns, ρ<SUB>N,AM CVn</SUB> = (5.5 ± 3.7) × 10<SUP>‑7</SUP> pc<SUP>‑3</SUP>. Magnetic CVs and period bouncers make up 35% and 25% of our sample, respectively. This work, through a novel discovery technique, shows that the observed number densities of CVs and AM CVns, as well as the fraction of period bouncers, are still in tension with population synthesis estimates.
-
NGTS-33b: A Young Super-Jupiter Hosted by a Fast Rotating Massive Hot StarIn the last few decades planet search surveys have been focusing on solar type stars, and only recently the high-mass regimes. This is mostly due to challenges arising from the lack of instrumental precision, and more importantly, the inherent active nature of fast rotating massive stars. Here we report NGTS-33b (TOI-6442b), a super-Jupiter planet with mass, radius and orbital period of 3.6 ± 0.3 M<SUB>j</SUB>, 1.64 ± 0.07 R<SUB>j</SUB> and 2.827972 ± 0.000001 days, respectively. The host is a fast rotating (0.6654 ± 0.0006 day) and hot (T<SUB>eff</SUB> = 7437 ± 72 K) A9V type star, with a mass and radius of 1.60 ± 0.11 M<SUB>⊙</SUB> and 1.47 ± 0.06 R<SUB>⊙</SUB>, respectively. Planet structure and Gyrochronology models shows that NGTS-33 is also very young with age limits of 10-50 Myr. In addition, membership analysis points towards the star being part of the Vela OB2 association, which has an age of ~ 20-35 Myr, thus providing further evidences about the young nature of NGTS-33. Its low bulk density of 0.19±0.03 gcm<SUP>-3</SUP> is 13<inline-formula><tex-math id=TM0001 notation=LaTeX>$\%$</tex-math></inline-formula> smaller than expected when compared to transiting hot Jupiters with similar masses. Such cannot be solely explained by its age, where an up to 15<inline-formula><tex-math id=TM0002 notation=LaTeX>$\%$</tex-math></inline-formula> inflated atmosphere is expected from planet structure models. Finally, we found that its emission spectroscopy metric is similar to JWST community targets, making the planet an interesting target for atmospheric follow-up. Therefore, NGTS-33b's discovery will not only add to the scarce population of young, massive and hot Jupiters, but will also help place further strong constraints on current formation and evolution models for such planetary systems.
-
ALMASOP. The Localized and Chemically Rich Features near the Bases of the Protostellar Jet in HOPS 87HOPS 87 is a Class 0 protostellar core known to harbor an extremely young bipolar outflow and a hot corino. We report the discovery of localized, chemically rich regions near the bases of the two-lobe bipolar molecular outflow in HOPS 87 containing molecules such as H<SUB>2</SUB>CO, <SUP>13</SUP>CS, H<SUB>2</SUB>S, OCS, and CH<SUB>3</SUB>OH, the simplest complex organic molecule (COM). The locations and kinematics suggest that these localized features are due to jet-driven shocks rather than being part of the hot-corino region encasing the protostar. The COM compositions of the molecular gas in these jet-localized regions are relatively simpler than those in the hot-corino zone. We speculate that this simplicity is due to either the liberation of ice with a less complex chemical history or the effects of shock chemistry. Our study highlights the dynamic interplay between the protostellar bipolar outflow, disk, inner-core environment, and the surrounding medium, contributing to our understanding of molecular complexity in solar-like young stellar objects.
-
X-Shooting ULLYSES: Massive stars at low metallicity: VIII. Stellar and wind parameters of newly revealed stripped stars in Be binariesOn the route toward merging neutron stars and stripped-envelope supernovae, binary population synthesis predicts a large number of post-interaction systems with massive stars that have been stripped of their outer layers. However, observations of such stars in the intermediate-mass regime below the Wolf-Rayet masses are rare. Using X-Shooting ULLYSES (XShootU) data, we have discovered three partially stripped star + Be/Oe binaries in the Magellanic Clouds. We analyzed the UV and optical spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. The estimated current masses of the partially stripped stars fall within the intermediate-mass range of ≈4 ‑ 8 M<SUB>⊙</SUB>. These objects are found to be over-luminous for their corresponding stellar masses, which aligns with the luminosities during core He-burning. Their accompanying Be/Oe secondaries are found to have much higher masses than their stripped primaries (mass ratio ≳2). The surfaces of all three partially stripped stars exhibit clear indications of significant nitrogen enrichment as well as a depletion of carbon and oxygen. Furthermore, one of our sample stars shows signs of substantial helium enrichment. Our study provides the first comprehensive determination of the wind parameters of partially stripped stars in the intermediate-mass range. The wind mass-loss rates of these stars are estimated to be on the order of 10<SUP>‑7</SUP> M<SUB>⊙</SUB> yr<SUP>‑1</SUP>, which is more than ten times higher than that of OB stars with the same luminosity. The current mass-loss recipes commonly employed in evolutionary models to characterize this phase are based on OB or WR mass-loss rates, and they significantly underestimate or overestimate the observed mass-loss rates of (partially) stripped stars by an order of magnitude. Binary evolution models suggest that the observed primaries had initial masses in the range of 12‑17 M<SUB>⊙</SUB>, and are potential candidates for stripped-envelope supernovae resulting in the formation of a neutron star. If these systems survive the explosion, they will likely evolve to become Be X-ray binaries and later double neutron stars.
-
A Broadband X-Ray Investigation of Fast-spinning Intermediate Polar CTCV J2056–3014We report on XMM-Newton, NuSTAR, and NICER X-ray observations of CTCV J2056–3014, a cataclysmic variable (CV) with one of the fastest-spinning white dwarfs (WDs) at P = 29.6 s. While previously classified as an intermediate polar, CJ2056 also exhibits the properties of WZ Sge–type CVs, such as dwarf novae and superoutbursts. With XMM-Newton and NICER, we detected the spin period up to ∼2 keV with 7σ significance. We constrained its derivative to <inline-formula> <mml:math overflow=scroll><mml:mo stretchy=false>|</mml:mo><mml:mrow><mml:mover><mml:mi>P</mml:mi><mml:mo>̇</mml:mo></mml:mover></mml:mrow><mml:mo stretchy=false>|</mml:mo><mml:mo><</mml:mo><mml:mn>1.8</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mo>‑</mml:mo><mml:mn>12</mml:mn></mml:mrow></mml:msup></mml:math> </inline-formula> s s<SUP>‑1</SUP> after correcting for binary orbital motion. The pulse profile is characterized by a single broad peak with ∼25% modulation. NuSTAR detected a fourfold increase in unabsorbed X-ray flux coincident with an optical flare, in 2022 November. The XMM-Newton and NICER X-ray spectra at 0.310 keV are best characterized by an absorbed, optically thin three-temperature thermal plasma model (kT = 0.3, 1.0, and 4.9 keV), while the NuSTAR spectra at 3–30 keV are best fit by a single-temperature thermal plasma model (kT = 8.4 keV), both with Fe abundance Z <SUB>Fe</SUB>/Z <SUB>⊙</SUB> = 0.3. CJ2056 exhibits similarities to other fast-spinning CVs, such as low plasma temperatures and no significant X-ray absorption at low energies. As the WD's magnetic field strength is unknown, we applied both nonmagnetic and magnetic CV spectral models (MKCFLOW and MCVSPEC) to determine the WD mass. The derived WD mass range (M = 0.7–1.0 M <SUB>⊙</SUB>) is above the centrifugal breakup mass limit of 0.56 M <SUB>⊙</SUB> and consistent with the mean WD mass of local CVs (M ≈ 0.8–0.9 M <SUB>⊙</SUB>).
-
X-Shooting ULLYSES: Massive Stars at low metallicity: IX. Empirical constraints on mass-loss rates and clumping parameters for OB supergiants in the Large Magellanic CloudContext. Current implementations of mass loss for hot, massive stars in stellar evolution models usually include a sharp increase in mass loss when blue supergiants become cooler than T<SUB>eff</SUB> ∼ 20 ‑ 22 kK. Such a drastic mass-loss jump has traditionally been motivated by the potential presence of a so-called bistability ionisation effect, which may occur for line-driven winds in this temperature region due to recombination of important line-driving ions. Aims. We perform quantitative spectroscopy using UV (ULLYSES program) and optical (XShootU collaboration) data for 17 OB-supergiant stars in the LMC (covering the range T<SUB>eff</SUB> ∼ 14 ‑ 32 kK), deriving absolute constraints on global stellar, wind, and clumping parameters. We examine whether there are any empirical signs of a mass-loss jump in the investigated region, and we study the clumped nature of the wind. Methods. We used a combination of the model atmosphere code FASTWIND and the genetic algorithm (GA) code Kiwi-GA to fit synthetic spectra of a multitude of diagnostic spectral lines in the optical and UV. Results. We find an almost monotonic decrease of mass-loss rate with effective temperature, with no signs of any upward mass loss jump anywhere in the examined region. Standard theoretical comparison models, which include a strong bistability jump thus severely overpredict the empirical mass-loss rates on the cool side of the predicted jump. Another key result is that across our sample we find that on average about 40% of the total wind mass seems to reside in the more diluted medium in between dense clumps. Conclusions. Our derived mass-loss rates suggest that for applications such as stellar evolution one should not include a drastic bistability jump in mass loss for stars in the temperature and luminosity region investigated here. The derived high values of interclump density further suggest that the common assumption of an effectively void interclump medium (applied in the vast majority of spectroscopic studies of hot star winds) is not generally valid in this parameter regime.
-
Characterizing high and low accretion states in VY Scl CVs using ZTF and TESS dataVY Scl binaries are a sub-class of cataclysmic variable (CV) which show extended low states, but do not show outbursts which are seen in other classes of CV. To better determine how often these systems spend in low states and to resolve the state transitions we have analysed Zwicky Transient Facility (ZTF) data on eight systems and Transiting Exoplanet Survey Satellite (TESS) data on six systems. Half of the sample spent most of the time in a high state; three show a broad range and one spends roughly half the time transitioning between high and low states. Using the ZTF data, we explore the colour variation as a function of brightness. In KR Aur, we identify a series of repeating outburst events whose brightness appears to increase over time. Using TESS data, we searched for periods other than the orbital. In LN UMa, we find evidence for a peak whose period varies between 3 and 6 d. We outline the current models which aim to explain the observed properties of VY Scl systems which includes disc irradiation and a white dwarf having a significant magnetic field.