Show simple item record

dc.contributorSchool of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia; OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia
dc.contributorSchool of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia; OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia; Department of Physics, University of Warwick, Coventry, West Midlands, CV4 7AL, UK
dc.contributorDepartment of Physics, University of Warwick, Coventry, West Midlands, CV4 7AL, UK
dc.contributorSchool of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia; OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia; Institute for Globally Distributed Open Research and Education (IGDORE)
dc.contributorDepartment of Physics and Astronomy, University of Turku, FI-20014 Turun yliopisto, Finland
dc.contributorDepartment of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
dc.contributorSchool of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia
dc.contributorDepartment of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK; Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
dc.contributorSchool of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
dc.contributorArmagh Observatory & Planetarium, College Hill, Armagh, BT61 9DB, County Armagh, Northern Ireland, UK
dc.contributorNational Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai, 50180, Thailand
dc.contributorDepartment of Physics and Astronomy, University of Manchester, M13 9PL, UK
dc.contributorInstitute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, UK
dc.contributorInstituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
dc.contributorInstituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
dc.contributor.authorMong, Y. -L.
dc.contributor.authorAckley, K.
dc.contributor.authorKillestein, T. L.
dc.contributor.authorGalloway, D. K.
dc.contributor.authorVassallo, C.
dc.contributor.authorDyer, M.
dc.contributor.authorCutter, R.
dc.contributor.authorBrown, M. J. I.
dc.contributor.authorLyman, J.
dc.contributor.authorUlaczyk, K.
dc.contributor.authorSteeghs, D.
dc.contributor.authorDhillon, V.
dc.contributor.authorO'Brien, P.
dc.contributor.authorRamsay, G.
dc.contributor.authorNoysena, K.
dc.contributor.authorKotak, R.
dc.contributor.authorBreton, R.
dc.contributor.authorNuttall, L.
dc.contributor.authorPallé, E.
dc.contributor.authorPollacco, D.
dc.contributor.authorThrane, E.
dc.contributor.authorAwiphan, S.
dc.contributor.authorBurhanudin, U.
dc.contributor.authorChote, P.
dc.contributor.authorChrimes, A.
dc.contributor.authorDaw, E.
dc.contributor.authorDuffy, C.
dc.contributor.authorEyles-Ferris, R.
dc.contributor.authorGompertz, B. P.
dc.contributor.authorHeikkilä, T.
dc.contributor.authorIrawati, P.
dc.contributor.authorKennedy, M.
dc.contributor.authorLevan, A.
dc.contributor.authorLittlefair, S.
dc.contributor.authorMakrygianni, L.
dc.contributor.authorMarsh, T.
dc.contributor.authorMata Sánchez, D.
dc.contributor.authorMattila, S.
dc.contributor.authorMaund, J. R.
dc.contributor.authorMcCormac, J.
dc.contributor.authorMkrtichian, D.
dc.contributor.authorMullaney, J.
dc.contributor.authorRol, E.
dc.contributor.authorSawangwit, U.
dc.contributor.authorStanway, E.
dc.contributor.authorStarling, R.
dc.contributor.authorStrøm, P.
dc.contributor.authorTooke, S.
dc.contributor.authorWiersema, K.
dc.date.accessioned2024-02-01T16:05:12Z
dc.date.available2024-02-01T16:05:12Z
dc.date.issued2023-01-01T00:00:00Z
dc.identifier.doi10.1093/mnras/stac3103
dc.identifier.doi10.48550/arXiv.2209.06375
dc.identifier.other2022arXiv220906375M
dc.identifier.other2022MNRAS.tmp.2937M
dc.identifier.othercs.CV
dc.identifier.otherastro-ph.IM
dc.identifier.otherarXiv:2209.06375
dc.identifier.other10.1093/mnras/stac3103
dc.identifier.other2022arXiv220906375M
dc.identifier.other2023MNRAS.518..752M
dc.identifier.other10.48550/arXiv.2209.06375
dc.identifier.other2022MNRAS.tmp.2937M
dc.identifier.other-
dc.identifier.other0000-0002-0440-9597
dc.identifier.other0000-0003-3665-5482
dc.identifier.other0000-0001-8945-5551
dc.identifier.other0000-0002-1207-9137
dc.identifier.other0000-0002-3464-0642
dc.identifier.other0000-0003-0771-4746
dc.identifier.other0000-0003-4236-9642
dc.identifier.other0000-0001-8722-9710
dc.identifier.other0000-0001-8522-4983
dc.identifier.other0000-0002-4418-3895
dc.identifier.other0000-0003-3251-3583
dc.identifier.other0000-0001-9842-6808
dc.identifier.other0000-0001-6662-0200
dc.identifier.other0000-0002-8775-2365
dc.identifier.other0000-0002-5826-0548
dc.identifier.other0000-0001-6894-6044
dc.identifier.other0000-0002-2498-7589
dc.identifier.other0000-0003-0733-7215
dc.identifier.other0000-0002-8770-809X
dc.identifier.other0000-0001-5803-2038
dc.identifier.other0000-0002-9133-7957
dc.identifier.urihttp://hdl.handle.net/20.500.14302/1253
dc.description.abstractDeveloping an effective automatic classifier to separate genuine sources from artifacts is essential for transient follow-ups in wide-field optical surveys. The identification of transient detections from the subtraction artifacts after the image differencing process is a key step in such classifiers, known as real-bogus classification problem. We apply a self-supervised machine learning model, the deep-embedded self-organizing map (DESOM) to this 'real-bogus' classification problem. DESOM combines an autoencoder and a self-organizing map to perform clustering in order to distinguish between real and bogus detections, based on their dimensionality-reduced representations. We use 32 × 32 normalized detection thumbnails as the input of DESOM. We demonstrate different model training approaches, and find that our best DESOM classifier shows a missed detection rate of $6.6{{\ \rm per\,cent}}$ with a false-positive rate of $1.5{{\ \rm per\,cent}}$. DESOM offers a more nuanced way to fine-tune the decision boundary identifying likely real detections when used in combination with other types of classifiers, e.g. built on neural networks or decision trees. We also discuss other potential usages of DESOM and its limitations.
dc.publisherMonthly Notices of the Royal Astronomical Society
dc.titleSelf-supervised clustering on image-subtracted data with deep-embedded self-organizing map
dc.typearticle
dc.source.journalMNRAS
dc.source.journalMNRAS.518
dc.source.volume518
refterms.dateFOA2024-02-01T16:05:12Z
dc.identifier.bibcode2023MNRAS.518..752M


Files in this item

Thumbnail
Name:
2023MNRAS.518..752M.pdf
Size:
4.256Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record