Show simple item record

dc.contributorSchool of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia; OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton, VIC 3800, Australia
dc.contributorDepartment of Physics, University of Warwick, Coventry, West Midlands CV4 7AL, UK
dc.contributorDepartment of Physics and Astronomy, Hicks Building, The University of Sheffield, Sheffield S3 7RH, UK
dc.contributorSchool of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
dc.contributorArmagh Observatory and Planetarium, College Hill, Armagh BT61 9DB, UK
dc.contributorNational Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand
dc.contributorDepartment of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
dc.contributorInstitute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, UK
dc.contributorInstituto de Astrofisica de Canarias, La Laguna, E-38205 Tenerife, Spain
dc.contributorSchool of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
dc.contributorDepartment of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
dc.contributor.authorMong, Y. -L.
dc.contributor.authorAckley, K.
dc.contributor.authorGalloway, D. K.
dc.contributor.authorKillestein, T.
dc.contributor.authorLyman, J.
dc.contributor.authorSteeghs, D.
dc.contributor.authorDhillon, V.
dc.contributor.authorO'Brien, P. T.
dc.contributor.authorRamsay, G.
dc.contributor.authorPoshyachinda, S.
dc.contributor.authorKotak, R.
dc.contributor.authorNuttall, L.
dc.contributor.authorPallé, E.
dc.contributor.authorPollacco, D.
dc.contributor.authorThrane, E.
dc.contributor.authorDyer, M. J.
dc.contributor.authorUlaczyk, K.
dc.contributor.authorCutter, R.
dc.contributor.authorMcCormac, J.
dc.contributor.authorChote, P.
dc.contributor.authorLevan, A. J.
dc.contributor.authorMarsh, T.
dc.contributor.authorStanway, E.
dc.contributor.authorGompertz, B.
dc.contributor.authorWiersema, K.
dc.contributor.authorChrimes, A.
dc.contributor.authorObradovic, A.
dc.contributor.authorMullaney, J.
dc.contributor.authorDaw, E.
dc.contributor.authorLittlefair, S.
dc.contributor.authorMaund, J.
dc.contributor.authorMakrygianni, L.
dc.contributor.authorBurhanudin, U.
dc.contributor.authorStarling, R. L. C.
dc.contributor.authorEyles-Ferris, R. A. J.
dc.contributor.authorTooke, S.
dc.contributor.authorDuffy, C.
dc.contributor.authorAukkaravittayapun, S.
dc.contributor.authorSawangwit, U.
dc.contributor.authorAwiphan, S.
dc.contributor.authorMkrtichian, D.
dc.contributor.authorIrawati, P.
dc.contributor.authorMattila, S.
dc.contributor.authorHeikkilä, T.
dc.contributor.authorBreton, R.
dc.contributor.authorKennedy, M.
dc.contributor.authorMata Sánchez, D.
dc.contributor.authorRol, E.
dc.date.accessioned2024-02-01T17:10:18Z
dc.date.available2024-02-01T17:10:18Z
dc.date.issued2020-12-01T00:00:00Z
dc.identifier.doi10.1093/mnras/staa3096
dc.identifier.doi10.48550/arXiv.2008.10178
dc.identifier.other2020arXiv200810178M
dc.identifier.other2020MNRAS.tmp.2912M
dc.identifier.other2020MNRAS.tmp.2901M
dc.identifier.otherastro-ph.IM
dc.identifier.other10.1093/mnras/staa3096
dc.identifier.other2020MNRAS.tmp.2901M
dc.identifier.other10.48550/arXiv.2008.10178
dc.identifier.other2020arXiv200810178M
dc.identifier.other2020MNRAS.tmp.2912M
dc.identifier.other2020MNRAS.499.6009M
dc.identifier.otherarXiv:2008.10178
dc.identifier.other-
dc.identifier.other0000-0002-3464-0642
dc.identifier.other0000-0003-4236-9642
dc.identifier.other0000-0003-3665-5482
dc.identifier.other0000-0001-8945-5551
dc.identifier.other0000-0002-8770-809X
dc.identifier.other0000-0002-5826-0548
dc.identifier.other0000-0001-9842-6808
dc.identifier.other0000-0003-0733-7215
dc.identifier.other0000-0001-5803-2038
dc.identifier.other0000-0001-8522-4983
dc.identifier.other0000-0001-6894-6044
dc.identifier.urihttp://hdl.handle.net/20.500.14302/1338
dc.description.abstractThe amount of observational data produced by time-domain astronomy is exponentially increasing. Human inspection alone is not an effective way to identify genuine transients from the data. An automatic real-bogus classifier is needed and machine learning techniques are commonly used to achieve this goal. Building a training set with a sufficiently large number of verified transients is challenging, due to the requirement of human verification. We present an approach for creating a training set by using all detections in the science images to be the sample of real detections and all detections in the difference images, which are generated by the process of difference imaging to detect transients, to be the samples of bogus detections. This strategy effectively minimizes the labour involved in the data labelling for supervised machine learning methods. We demonstrate the utility of the training set by using it to train several classifiers utilizing as the feature representation the normalized pixel values in 21 × 21 pixel stamps centred at the detection position, observed with the Gravitational-wave Optical Transient Observer (GOTO) prototype. The real-bogus classifier trained with this strategy can provide up to $95{{\ \rm per\ cent}}$ prediction accuracy on the real detections at a false alarm rate of $1{{\ \rm per\ cent}}$ .
dc.publisherMonthly Notices of the Royal Astronomical Society
dc.titleMachine learning for transient recognition in difference imaging with minimum sampling effort
dc.typearticle
dc.source.journalMNRAS
dc.source.journalMNRAS.499
dc.source.volume499
refterms.dateFOA2024-02-01T17:10:19Z
dc.identifier.bibcode2020MNRAS.499.6009M


Files in this item

Thumbnail
Name:
2020MNRAS.499.6009M.pdf
Size:
663.6Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record