Machine learning for transient recognition in difference imaging with minimum sampling effort
dc.contributor | School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia; OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton, VIC 3800, Australia | |
dc.contributor | Department of Physics, University of Warwick, Coventry, West Midlands CV4 7AL, UK | |
dc.contributor | Department of Physics and Astronomy, Hicks Building, The University of Sheffield, Sheffield S3 7RH, UK | |
dc.contributor | School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK | |
dc.contributor | Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DB, UK | |
dc.contributor | National Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand | |
dc.contributor | Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland | |
dc.contributor | Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, UK | |
dc.contributor | Instituto de Astrofisica de Canarias, La Laguna, E-38205 Tenerife, Spain | |
dc.contributor | School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia | |
dc.contributor | Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK | |
dc.contributor.author | Mong, Y. -L. | |
dc.contributor.author | Ackley, K. | |
dc.contributor.author | Galloway, D. K. | |
dc.contributor.author | Killestein, T. | |
dc.contributor.author | Lyman, J. | |
dc.contributor.author | Steeghs, D. | |
dc.contributor.author | Dhillon, V. | |
dc.contributor.author | O'Brien, P. T. | |
dc.contributor.author | Ramsay, G. | |
dc.contributor.author | Poshyachinda, S. | |
dc.contributor.author | Kotak, R. | |
dc.contributor.author | Nuttall, L. | |
dc.contributor.author | Pallé, E. | |
dc.contributor.author | Pollacco, D. | |
dc.contributor.author | Thrane, E. | |
dc.contributor.author | Dyer, M. J. | |
dc.contributor.author | Ulaczyk, K. | |
dc.contributor.author | Cutter, R. | |
dc.contributor.author | McCormac, J. | |
dc.contributor.author | Chote, P. | |
dc.contributor.author | Levan, A. J. | |
dc.contributor.author | Marsh, T. | |
dc.contributor.author | Stanway, E. | |
dc.contributor.author | Gompertz, B. | |
dc.contributor.author | Wiersema, K. | |
dc.contributor.author | Chrimes, A. | |
dc.contributor.author | Obradovic, A. | |
dc.contributor.author | Mullaney, J. | |
dc.contributor.author | Daw, E. | |
dc.contributor.author | Littlefair, S. | |
dc.contributor.author | Maund, J. | |
dc.contributor.author | Makrygianni, L. | |
dc.contributor.author | Burhanudin, U. | |
dc.contributor.author | Starling, R. L. C. | |
dc.contributor.author | Eyles-Ferris, R. A. J. | |
dc.contributor.author | Tooke, S. | |
dc.contributor.author | Duffy, C. | |
dc.contributor.author | Aukkaravittayapun, S. | |
dc.contributor.author | Sawangwit, U. | |
dc.contributor.author | Awiphan, S. | |
dc.contributor.author | Mkrtichian, D. | |
dc.contributor.author | Irawati, P. | |
dc.contributor.author | Mattila, S. | |
dc.contributor.author | Heikkilä, T. | |
dc.contributor.author | Breton, R. | |
dc.contributor.author | Kennedy, M. | |
dc.contributor.author | Mata Sánchez, D. | |
dc.contributor.author | Rol, E. | |
dc.date.accessioned | 2024-02-01T17:10:18Z | |
dc.date.available | 2024-02-01T17:10:18Z | |
dc.date.issued | 2020-12-01T00:00:00Z | |
dc.identifier.doi | 10.1093/mnras/staa3096 | |
dc.identifier.doi | 10.48550/arXiv.2008.10178 | |
dc.identifier.other | 2020arXiv200810178M | |
dc.identifier.other | 2020MNRAS.tmp.2912M | |
dc.identifier.other | 2020MNRAS.tmp.2901M | |
dc.identifier.other | astro-ph.IM | |
dc.identifier.other | 10.1093/mnras/staa3096 | |
dc.identifier.other | 2020MNRAS.tmp.2901M | |
dc.identifier.other | 10.48550/arXiv.2008.10178 | |
dc.identifier.other | 2020arXiv200810178M | |
dc.identifier.other | 2020MNRAS.tmp.2912M | |
dc.identifier.other | 2020MNRAS.499.6009M | |
dc.identifier.other | arXiv:2008.10178 | |
dc.identifier.other | - | |
dc.identifier.other | 0000-0002-3464-0642 | |
dc.identifier.other | 0000-0003-4236-9642 | |
dc.identifier.other | 0000-0003-3665-5482 | |
dc.identifier.other | 0000-0001-8945-5551 | |
dc.identifier.other | 0000-0002-8770-809X | |
dc.identifier.other | 0000-0002-5826-0548 | |
dc.identifier.other | 0000-0001-9842-6808 | |
dc.identifier.other | 0000-0003-0733-7215 | |
dc.identifier.other | 0000-0001-5803-2038 | |
dc.identifier.other | 0000-0001-8522-4983 | |
dc.identifier.other | 0000-0001-6894-6044 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14302/1338 | |
dc.description.abstract | The amount of observational data produced by time-domain astronomy is exponentially increasing. Human inspection alone is not an effective way to identify genuine transients from the data. An automatic real-bogus classifier is needed and machine learning techniques are commonly used to achieve this goal. Building a training set with a sufficiently large number of verified transients is challenging, due to the requirement of human verification. We present an approach for creating a training set by using all detections in the science images to be the sample of real detections and all detections in the difference images, which are generated by the process of difference imaging to detect transients, to be the samples of bogus detections. This strategy effectively minimizes the labour involved in the data labelling for supervised machine learning methods. We demonstrate the utility of the training set by using it to train several classifiers utilizing as the feature representation the normalized pixel values in 21 × 21 pixel stamps centred at the detection position, observed with the Gravitational-wave Optical Transient Observer (GOTO) prototype. The real-bogus classifier trained with this strategy can provide up to $95{{\ \rm per\ cent}}$ prediction accuracy on the real detections at a false alarm rate of $1{{\ \rm per\ cent}}$ . | |
dc.publisher | Monthly Notices of the Royal Astronomical Society | |
dc.title | Machine learning for transient recognition in difference imaging with minimum sampling effort | |
dc.type | article | |
dc.source.journal | MNRAS | |
dc.source.journal | MNRAS.499 | |
dc.source.volume | 499 | |
refterms.dateFOA | 2024-02-01T17:10:19Z | |
dc.identifier.bibcode | 2020MNRAS.499.6009M |