Show simple item record

dc.contributorDepartment of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK; The School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
dc.contributorDepartment of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
dc.contributorSchool of Physics and Astronomy, Monash University, Clayton VIC 3800, Australia
dc.contributorDepartment of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
dc.contributorSchool of Physics and Astronomy, Monash University, Clayton VIC 3800, Australia; OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Clayton VIC 3800, Australia
dc.contributorSchool of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
dc.contributorArmagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK
dc.contributorNational Astronomical Research Institute of Thailand, 260 Moo 4, T. Donkaew, A. Maerim, Chiangmai 50180 Thailand
dc.contributorDepartment of Physics and Astronomy, University of Turku, Vesilinnantie 5, Turku, FI-20014, Finland
dc.contributorUniversity of Portsmouth, Portsmouth, PO1 3FX, UK
dc.contributorInstituto de Astrofísica de Canarias, La Laguna, Tenerife, E-38205, Spain
dc.contributorDepartment of Physics and Astronomy, Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M13 9PL, UK
dc.contributor.authorMakrygianni, L.
dc.contributor.authorMullaney, J.
dc.contributor.authorDhillon, V.
dc.contributor.authorLittlefair, S.
dc.contributor.authorAckley, K.
dc.contributor.authorDyer, M. J.
dc.contributor.authorLyman, J.
dc.contributor.authorUlaczyk, K.
dc.contributor.authorCutter, R.
dc.contributor.authorMong, Y. -L.
dc.contributor.authorSteeghs, D.
dc.contributor.authorGalloway, D. K.
dc.contributor.authorO'Brien, P.
dc.contributor.authorRamsay, G.
dc.contributor.authorPoshyachinda, S.
dc.contributor.authorKotak, R.
dc.contributor.authorNuttall, L.
dc.contributor.authorPallé, E.
dc.contributor.authorPollacco, D.
dc.contributor.authorThrane, E.
dc.contributor.authorAukkaravittayapun, S.
dc.contributor.authorAwiphan, S.
dc.contributor.authorBreton, R. P.
dc.contributor.authorBurhanudin, U.
dc.contributor.authorChote, P.
dc.contributor.authorChrimes, A.
dc.contributor.authorDaw, E.
dc.contributor.authorDuffy, C.
dc.contributor.authorEyles-Ferris, R.
dc.contributor.authorGompertz, B.
dc.contributor.authorHeikkilä, T.
dc.contributor.authorIrawati, P.
dc.contributor.authorKennedy, M.
dc.contributor.authorKillestein, T.
dc.contributor.authorLevan, A.
dc.contributor.authorMarsh, T.
dc.contributor.authorMata-Sanchez, D.
dc.contributor.authorMattila, S.
dc.contributor.authorMaund, J.
dc.contributor.authorMcCormac, J.
dc.contributor.authorMkrtichian, D.
dc.contributor.authorRol, E.
dc.contributor.authorSawangwit, U.
dc.contributor.authorStanway, E.
dc.contributor.authorStarling, R.
dc.contributor.authorStrøm, P. A.
dc.contributor.authorTooke, S.
dc.contributor.authorWiersema, K.
dc.date.accessioned2024-02-01T17:10:20Z
dc.date.available2024-02-01T17:10:20Z
dc.date.issued2021-06-01T00:00:00Z
dc.identifier.doi10.1017/pasa.2021.19
dc.identifier.doi10.48550/arXiv.2105.05128
dc.identifier.other2021arXiv210505128M
dc.identifier.otherastro-ph.IM
dc.identifier.otherarXiv:2105.05128
dc.identifier.other2021arXiv210505128M
dc.identifier.other2021PASA...38...25M
dc.identifier.other10.48550/arXiv.2105.05128
dc.identifier.other10.1017/pasa.2021.19
dc.identifier.other0000-0002-7466-4868
dc.identifier.other0000-0002-3126-6712
dc.identifier.other-
dc.identifier.urihttp://hdl.handle.net/20.500.14302/1345
dc.description.abstractWe have adapted the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Science Pipelines to process data from the Gravitational-wave Optical Transient Observer (GOTO) prototype. In this paper, we describe how we used the LSST Science Pipelines to conduct forced photometry measurements on nightly GOTO data. By comparing the photometry measurements of sources taken on multiple nights, we find that the precision of our photometry is typically better than 20 mmag for sources brighter than 16 mag. We also compare our photometry measurements against colour-corrected Panoramic Survey Telescope and Rapid Response System photometry and find that the two agree to within 10 mmag (1 $σ$ ) for bright (i.e., $∼ 14th mag$ ) sources to 200 mmag for faint (i.e., $∼ 18th mag$ ) sources. Additionally, we compare our results to those obtained by GOTO's own in-house pipeline, GOTOPHOTO, and obtain similar results. Based on repeatability measurements, we measure a $5σ$ L-band survey depth of between 19 and 20 magnitudes, depending on observing conditions. We assess, using repeated observations of non-varying standard Sloan Digital Sky Survey stars, the accuracy of our uncertainties, which we find are typically overestimated by roughly a factor of two for bright sources (i.e., $< 15th mag$ ), but slightly underestimated (by roughly a factor of 1.25) for fainter sources ( $> 17th mag$ ). Finally, we present lightcurves for a selection of variable sources and compare them to those obtained with the Zwicky Transient Factory and GAIA. Despite the LSST Software Pipelines still undergoing active development, our results show that they are already delivering robust forced photometry measurements from GOTO data.
dc.publisherPublications of the Astronomical Society of Australia
dc.titleProcessing GOTO survey data with the Rubin Observatory LSST Science Pipelines II: Forced Photometry and lightcurves
dc.typearticle
dc.source.journalPASA
dc.source.journalPASA...38
dc.source.volume38
refterms.dateFOA2024-02-01T17:10:20Z
dc.identifier.bibcode2021PASA...38...25M


Files in this item

Thumbnail
Name:
2021PASA...38...25M.pdf
Size:
1.158Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record