Show simple item record

dc.contributorDivision of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
dc.contributorLeiden Observatory, Leiden University, PO Box 9513, NL-2300 RA, Leiden, the Netherlands
dc.contributorAlbert-Einstein-Institut, Max-Planck-Institut fúr Gravitationsphysik, D-30167 Hannover, Germany
dc.contributorDepartment of Astrophysics/IMAPP, Radboud University Nijmegen, POBox 9010, NL-6500 GL, Nijmegen, the Netherlands; Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
dc.contributorDepartment of Physics, University of Warwick, Coventry CV4 7AL, UK
dc.contributorArmagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, UK
dc.contributorDepartment of Astrophysics/IMAPP, Radboud University Nijmegen, POBox 9010, NL-6500 GL, Nijmegen, the Netherlands
dc.contributor.authorKupfer, T.
dc.contributor.authorKorol, V.
dc.contributor.authorShah, S.
dc.contributor.authorNelemans, G.
dc.contributor.authorMarsh, T. R.
dc.contributor.authorRamsay, G.
dc.contributor.authorGroot, P. J.
dc.contributor.authorSteeghs, D. T. H.
dc.contributor.authorRossi, E. M.
dc.date.accessioned2024-02-01T17:10:47Z
dc.date.available2024-02-01T17:10:47Z
dc.date.issued2018-10-01T00:00:00Z
dc.identifier.doi10.1093/mnras/sty1545
dc.identifier.doi10.48550/arXiv.1805.00482
dc.identifier.other2018MNRAS.tmp.1473K
dc.identifier.other2018arXiv180500482K
dc.identifier.otherastro-ph.SR
dc.identifier.other2018MNRAS.tmp.1473K
dc.identifier.other2018MNRAS.480..302K
dc.identifier.other2018arXiv180500482K
dc.identifier.other10.48550/arXiv.1805.00482
dc.identifier.otherarXiv:1805.00482
dc.identifier.other10.1093/mnras/sty1545
dc.identifier.other-
dc.identifier.urihttp://hdl.handle.net/20.500.14302/1366
dc.description.abstractUltracompact binaries with orbital periods less than a few hours will dominate the gravitational wave signal in the mHz regime. Until recently, 10 systems were expected to have a predicted gravitational wave signal strong enough to be detectable by the Laser Interferometer Space Antenna (LISA), the so-called `verification binaries'. System parameters, including distances, are needed to provide an accurate prediction of the expected gravitational wave strength to be measured by LISA. Using parallaxes from Gaia Data Release 2 we calculate signal-to-noise ratios (SNR) for ≈50 verification binary candidates. We find that 11 binaries reach an SNR ≥ 20, two further binaries reaching an SNR≥ 5, and three more systems are expected to have a SNR≈ 5 after 4 yr integration with LISA. For these 16 systems, we present predictions of the gravitational wave amplitude (A) and parameter uncertainties from Fisher information matrix on the amplitude (A) and inclination (ι).
dc.publisherMonthly Notices of the Royal Astronomical Society
dc.titleLISA verification binaries with updated distances from Gaia Data Release 2
dc.typearticle
dc.source.journalMNRAS
dc.source.journalMNRAS.480
dc.source.volume480
refterms.dateFOA2024-02-01T17:10:47Z
dc.identifier.bibcode2018MNRAS.480..302K


Files in this item

Thumbnail
Name:
2018MNRAS.480..302K.pdf
Size:
770.5Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record