Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Quintero Noda, C.Schlichenmaier, R.
Bellot Rubio, L. R.
Löfdahl, M. G.
Khomenko, E.
Jurčák, J.
Leenaarts, J.
Kuckein, C.
González Manrique, S. J.
Gunár, S.
Nelson, C. J.
de la Cruz Rodríguez, J.
Tziotziou, K.
Tsiropoula, G.
Aulanier, G.
Aboudarham, J.
Allegri, D.
Alsina Ballester, E.
Amans, J. P.
Asensio Ramos, A.
Bailén, F. J.
Balaguer, M.
Baldini, V.
Balthasar, H.
Barata, T.
Barczynski, K.
Barreto Cabrera, M.
Baur, A.
Béchet, C.
Beck, C.
Belío-Asín, M.
Bello-González, N.
Belluzzi, L.
Bentley, R. D.
Berdyugina, S. V.
Berghmans, D.
Berlicki, A.
Berrilli, F.
Berkefeld, T.
Bettonvil, F.
Bianda, M.
Bienes Pérez, J.
Bonaque-González, S.
Brajša, R.
Bommier, V.
Bourdin, P. -A.
Burgos Martín, J.
Calchetti, D.
Calcines, A.
Calvo Tovar, J.
Campbell, R. J.
Carballo-Martín, Y.
Carbone, V.
Carlin, E. S.
Carlsson, M.
Castro López, J.
Cavaller, L.
Cavallini, F.
Cauzzi, G.
Cecconi, M.
Chulani, H. M.
Cirami, R.
Consolini, G.
Coretti, I.
Cosentino, R.
Cózar-Castellano, J.
Dalmasse, K.
Danilovic, S.
De Juan Ovelar, M.
Del Moro, D.
del Pino Alemán, T.
del Toro Iniesta, J. C.
Denker, C.
Dhara, S. K.
Di Marcantonio, P.
Díaz Baso, C. J.
Diercke, A.
Dineva, E.
Díaz-García, J. J.
Doerr, H. -P.
Doyle, G.
Erdelyi, R.
Ermolli, I.
Escobar Rodríguez, A.
Esteban Pozuelo, S.
Faurobert, M.
Felipe, T.
Feller, A.
Feijoo Amoedo, N.
Femenía Castellá, B.
Fernandes, J.
Ferro Rodríguez, I.
Figueroa, I.
Fletcher, L.
Franco Ordovas, A.
Gafeira, R.
Gardenghi, R.
Gelly, B.
Giorgi, F.
Gisler, D.
Giovannelli, L.
González, F.
González, J. B.
González-Cava, J. M.
González García, M.
Gömöry, P.
Gracia, F.
Grauf, B.
Greco, V.
Grivel, C.
Guerreiro, N.
Guglielmino, S. L.
Hammerschlag, R.
Hanslmeier, A.
Hansteen, V.
Heinzel, P.
Hernández-Delgado, A.
Hernández Suárez, E.
Hidalgo, S. L.
Hill, F.
Hizberger, J.
Hofmeister, S.
Jägers, A.
Janett, G.
Jarolim, R.
Jess, D.
Jiménez Mejías, D.
Jolissaint, L.
Kamlah, R.
Kapitán, J.
Kašparová, J.
Keller, C. U.
Kentischer, T.
Kiselman, D.
Kleint, L.
Klvana, M.
Kontogiannis, I.
Krishnappa, N.
Kučera, A.
Labrosse, N.
Lagg, A.
Landi Degl'Innocenti, E.
Langlois, M.
Lafon, M.
Laforgue, D.
Le Men, C.
Lepori, B.
Lepreti, F.
Lindberg, B.
Lilje, P. B.
López Ariste, A.
López Fernández, V. A.
López Jiménez, A. C.
López López, R.
Manso Sainz, R.
Marassi, A.
Marco de la Rosa, J.
Marino, J.
Marrero, J.
Martín, A.
Martín Gálvez, A.
Martín Hernando, Y.
Masciadri, E.
Martínez González, M.
Matta-Gómez, A.
Mato, A.
Mathioudakis, M.
Matthews, S.
Mein, P.
Merlos García, F.
Moity, J.
Montilla, I.
Molinaro, M.
Molodij, G.
Montoya, L. M.
Munari, M.
Murabito, M.
Núñez Cagigal, M.
Oliviero, M.
Orozco Suárez, D.
Ortiz, A.
Padilla-Hernández, C.
Paéz Mañá, E.
Paletou, F.
Pancorbo, J.
Pastor Cañedo, A.
Pastor Yabar, A.
Peat, A. W.
Pedichini, F.
Peixinho, N.
Peñate, J.
Pérez de Taoro, A.
Peter, H.
Petrovay, K.
Piazzesi, R.
Pietropaolo, E.
Pleier, O.
Poedts, S.
Pötzi, W.
Podladchikova, T.
Prieto, G.
Quintero Nehrkorn, J.
Ramelli, R.
Ramos Sapena, Y.
Rasilla, J. L.
Reardon, K.
Rebolo, R.
Regalado Olivares, S.
Reyes García-Talavera, M.
Riethmüller, T. L.
Rimmele, T.
Rodríguez Delgado, H.
Rodríguez González, N.
Rodríguez-Losada, J. A.
Rodríguez Ramos, L. F.
Romano, P.
Roth, M.
Rouppe van der Voort, L.
Rudawy, P.
Ruiz de Galarreta, C.
Rybák, J.
Salvade, A.
Sánchez-Capuchino, J.
Sánchez Rodríguez, M. L.
Sangiorgi, M.
Sayède, F.
Scharmer, G.
Scheiffelen, T.
Schmidt, W.
Schmieder, B.
Scirè, C.
Scuderi, S.
Siegel, B.
Sigwarth, M.
Simões, P. J. A.
Snik, F.
Sliepen, G.
Sobotka, M.
Socas-Navarro, H.
Sola La Serna, P.
Solanki, S. K.
Soler Trujillo, M.
Soltau, D.
Sordini, A.
Sosa Méndez, A.
Stangalini, M.
Steiner, O.
Stenflo, J. O.
Štěpán, J.
Strassmeier, K. G.
Sudar, D.
Suematsu, Y.
Sütterlin, P.
Tallon, M.
Temmer, M.
Tenegi, F.
Tritschler, A.
Trujillo Bueno, J.
Turchi, A.
Utz, D.
van Harten, G.
van Noort, M.
van Werkhoven, T.
Vansintjan, R.
Vaz Cedillo, J. J.
Vega Reyes, N.
Verma, M.
Veronig, A. M.
Viavattene, G.
Vitas, N.
Vögler, A.
von der Lühe, O.
Volkmer, R.
Waldmann, T. A.
Walton, D.
Wisniewska, A.
Zeman, J.
Zeuner, F.
Zhang, L. Q.
Zuccarello, F.
Collados, M.
Publication Volume
666
Metadata
Show full item recordae974a485f413a2113503eed53cd6c53
10.1051/0004-6361/202243867
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
The European Solar TelescopeInstituto de Astrofísica de Canarias, 38205, La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38206, La Laguna, Tenerife, Spain; Leibniz-Institut für Sonnenphysik (KIS), Schöneckstr. 6, 79104, Freiburg, Germany; Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008, Granada, Spain; Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Center, 10691, Stockholm, Sweden; Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 25165, Ondřejov, Czech Republic; Instituto de Astrofísica de Canarias, 38205, La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38206, La Laguna, Tenerife, Spain; Astronomical Institute of the Slovak Academy of Sciences, 05960, Tatranská Lomnica, Slovakia; Leibniz-Institut für Sonnenphysik (KIS), Schöneckstr. 6, 79104, Freiburg, Germany; Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, Northern Ireland, UK; European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands; Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli, Greece; Laboratoire de Physique des Plasmas (LPP), École Polytechnique, IP Paris, Sorbonne Université, CNRS, Observatoire de Paris, Université PSL, Université Paris Saclay, Paris, France; Rosseland Centre for Solar Physics, University of Oslo, PO Box 1029, Blindern, 0315, Oslo, Norway; LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195, Meudon, France; et al. (Astronomy and Astrophysics, 2022-10-01)The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems.
-
Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagationCentre for Space Research, North-West University, Potchefstroom, 2520, South Africa; Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-8582, Japan; AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, CEA Paris-Saclay, IRFU/DAp, Bat 709, Orme des Merisiers, 91191 Gif-sur-Yvette, France; Centre for Advanced Instrumentation, Dept. of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom; Laboratoire Leprince-Ringuet, École Polytechnique (UMR 7638, CNRS/IN2P3, Institut Polytechnique de Paris), 91128 Palaiseau, France; Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain; Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain; Universidad Nacional Autónoma de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico; Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile; University of Geneva - Département de physique nucléaire et corpusculaire, 24 rue du Général-Dufour, 1211 Genave 4, Switzerland; et al. (Journal of Cosmology and Astroparticle Physics, 2021-02-01)The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.
-
Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagationCentre for Space Research, North-West University, Potchefstroom, 2520, South Africa; Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-8582, Japan; AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, CEA Paris-Saclay, IRFU/DAp, Bat 709, Orme des Merisiers, 91191 Gif-sur-Yvette, France; Centre for Advanced Instrumentation, Dept. of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom; Laboratoire Leprince-Ringuet, École Polytechnique (UMR 7638, CNRS/IN2P3, Institut Polytechnique de Paris), 91128 Palaiseau, France; Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain; Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain; Universidad Nacional Autónoma de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico; Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile; University of Geneva - Département de physique nucléaire et corpusculaire, 24 rue du Général-Dufour, 1211 Genave 4, Switzerland; et al. (Journal of Cosmology and Astroparticle Physics, 2021-02-01)The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.