Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Author
Abdalla, H.Abe, H.
Acero, F.
Acharyya, A.
Adam, R.
Agudo, I.
Aguirre-Santaella, A.
Alfaro, R.
Alfaro, J.
Alispach, C.
Aloisio, R.
Alves Batista, R.
Amati, L.
Amato, E.
Ambrosi, G.
Angüner, E. O.
Araudo, A.
Armstrong, T.
Arqueros, F.
Arrabito, L.
Asano, K.
Ascasíbar, Y.
Ashley, M.
Backes, M.
Balazs, C.
Balbo, M.
Balmaverde, B.
Baquero Larriva, A.
Barbosa Martins, V.
Barkov, M.
Baroncelli, L.
Barres de Almeida, U.
Barrio, J. A.
Batista, P. -I.
Becerra González, J.
Becherini, Y.
Beck, G.
Becker Tjus, J.
Belmont, R.
Benbow, W.
Bernardini, E.
Berti, A.
Berton, M.
Bertucci, B.
Beshley, V.
Bi, B.
Biasuzzi, B.
Biland, A.
Bissaldi, E.
Biteau, J.
Blanch, O.
Bocchino, F.
Boisson, C.
Bolmont, J.
Bonanno, G.
Bonneau Arbeletche, L.
Bonnoli, G.
Bordas, P.
Bottacini, E.
Böttcher, M.
Bozhilov, V.
Bregeon, J.
Brill, A.
Brown, A. M.
Bruno, P.
Bruno, A.
Bulgarelli, A.
Burton, M.
Buscemi, M.
Caccianiga, A.
Cameron, R.
Capasso, M.
Caprai, M.
Caproni, A.
Capuzzo-Dolcetta, R.
Caraveo, P.
Carosi, R.
Carosi, A.
Casanova, S.
Cascone, E.
Cauz, D.
Cerny, K.
Cerruti, M.
Chadwick, P.
Chaty, S.
Chen, A.
Chernyakova, M.
Chiaro, G.
Chiavassa, A.
Chytka, L.
Conforti, V.
Conte, F.
Contreras, J. L.
Coronado-Blazquez, J.
Cortina, J.
Costa, A.
Costantini, H.
Covino, S.
Cristofari, P.
Cuevas, O.
D'Ammando, F.
Daniel, M. K.
Davies, J.
Dazzi, F.
De Angelis, A.
de Bony de Lavergne, M.
De Caprio, V.
de Cássia dos Anjos, R.
de Gouveia Dal Pino, E. M.
De Lotto, B.
De Martino, D.
de Naurois, M.
de Oña Wilhelmi, E.
De Palma, F.
de Souza, V.
Delgado, C.
Della Ceca, R.
della Volpe, D.
Depaoli, D.
Di Girolamo, T.
Di Pierro, F.
Díaz, C.
Díaz-Bahamondes, C.
Diebold, S.
Djannati-Ataï, A.
Dmytriiev, A.
Domínguez, A.
Donini, A.
Dorner, D.
Doro, M.
Dournaux, J.
Dwarkadas, V. V.
Ebr, J.
Eckner, C.
Einecke, S.
Ekoume, T. R. N.
Elsässer, D.
Emery, G.
Evoli, C.
Fairbairn, M.
Falceta-Goncalves, D.
Fegan, S.
Feng, Q.
Ferrand, G.
Fiandrini, E.
Fiasson, A.
Fioretti, V.
Foffano, L.
Fonseca, M. V.
Font, L.
Fontaine, G.
Franco, F. J.
Freixas Coromina, L.
Fukami, S.
Fukazawa, Y.
Fukui, Y.
Gaggero, D.
Galanti, G.
Gammaldi, V.
Garcia, E.
Garczarczyk, M.
Gascon, D.
Gaug, M.
Gent, A.
Ghalumyan, A.
Ghirlanda, G.
Gianotti, F.
Giarrusso, M.
Giavitto, G.
Giglietto, N.
Giordano, F.
Glicenstein, J.
Goldoni, P.
González, J. M.
Gourgouliatos, K.
Grabarczyk, T.
Grandi, P.
Granot, J.
Grasso, D.
Green, J.
Grube, J.
Gueta, O.
Gunji, S.
Halim, A.
Harvey, M.
Hassan Collado, T.
Hayashi, K.
Heller, M.
Hernández Cadena, S.
Hervet, O.
Hinton, J.
Hiroshima, N.
Hnatyk, B.
Hnatyk, R.
Hoffmann, D.
Hofmann, W.
Holder, J.
Horan, D.
Hörandel, J.
Horvath, P.
Hovatta, T.
Hrabovsky, M.
Hrupec, D.
Hughes, G.
Hütten, M.
Iarlori, M.
Inada, T.
Inoue, S.
Insolia, A.
Ionica, M.
Iori, M.
Jacquemont, M.
Jamrozy, M.
Janecek, P.
Jiménez Martínez, I.
Jin, W.
Jung-Richardt, I.
Jurysek, J.
Kaaret, P.
Karas, V.
Karkar, S.
Kawanaka, N.
Kerszberg, D.
Khélifi, B.
Kissmann, R.
Knödlseder, J.
Kobayashi, Y.
Kohri, K.
Komin, N.
Kong, A.
Kosack, K.
Kubo, H.
La Palombara, N.
Lamanna, G.
Lang, R. G.
Lapington, J.
Laporte, P.
Lefaucheur, J.
Lemoine-Goumard, M.
Lenain, J.
Leone, F.
Leto, G.
Leuschner, F.
Lindfors, E.
Lloyd, S.
Lohse, T.
Lombardi, S.
Longo, F.
Lopez, A.
López, M.
López-Coto, R.
Loporchio, S.
Lucarelli, F.
Luque-Escamilla, P. L.
Lyard, E.
Maggio, C.
Majczyna, A.
Makariev, M.
Mallamaci, M.
Mandat, D.
Maneva, G.
Manganaro, M.
Manicò, G.
Marcowith, A.
Marculewicz, M.
Markoff, S.
Marquez, P.
Martí, J.
Martinez, O.
Martínez, M.
Martínez, G.
Martínez-Huerta, H.
Maurin, G.
Mazin, D.
Mbarubucyeye, J. D.
Medina Miranda, D.
Meyer, M.
Micanovic, S.
Miener, T.
Minev, M.
Miranda, J. M.
Mitchell, A.
Mizuno, T.
Mode, B.
Moderski, R.
Mohrmann, L.
Molina, E.
Montaruli, T.
Moralejo, A.
Morales Merino, J.
Morcuende-Parrilla, D.
Morselli, A.
Mukherjee, R.
Mundell, C.
Murach, T.
Muraishi, H.
Nagai, A.
Nakamori, T.
Nemmen, R.
Niemiec, J.
Nieto, D.
Nievas, M.
Nikolajuk, M.
Nishijima, K.
Noda, K.
Nosek, D.
Nozaki, S.
O'Brien, P.
Ohira, Y.
Ohishi, M.
Oka, T.
Ong, R. A.
Orienti, M.
Orito, R.
Orlandini, M.
Orlando, E.
Osborne, J. P.
Ostrowski, M.
Oya, I.
Pagliaro, A.
Palatka, M.
Paneque, D.
Pantaleo, F. R.
Paredes, J. M.
Parmiggiani, N.
Patricelli, B.
Pavletić, L.
Pe'er, A.
Pech, M.
Pecimotika, M.
Peresano, M.
Persic, M.
Petruk, O.
Pfrang, K.
Piatteli, P.
Pietropaolo, E.
Pillera, R.
Pilszyk, B.
Pimentel, D.
Pintore, F.
Pita, S.
Pohl, M.
Poireau, V.
Polo, M.
Prado, R. R.
Prast, J.
Principe, G.
Produit, N.
Prokoph, H.
Prouza, M.
Przybilski, H.
Pueschel, E.
Pühlhofer, G.
Pumo, M. L.
Punch, M.
Queiroz, F.
Quirrenbach, A.
Rando, R.
Razzaque, S.
Rebert, E.
Recchia, S.
Reichherzer, P.
Reimer, O.
Reimer, A.
Renier, Y.
Reposeur, T.
Rhode, W.
Ribeiro, D.
Ribó, M.
Richtler, T.
Rico, J.
Rieger, F.
Rizi, V.
Rodriguez, J.
Rodriguez Fernandez, G.
Rodriguez Ramirez, J. C.
Rodríguez Vázquez, J. J.
Romano, P.
Romeo, G.
Roncadelli, M.
Rosado, J.
Rosales de Leon, A.
Rowell, G.
Rudak, B.
Rujopakarn, W.
Russo, F.
Sadeh, I.
Saha, L.
Saito, T.
Salesa Greus, F.
Sanchez, D.
Sánchez-Conde, M.
Sangiorgi, P.
Sano, H.
Santander, M.
Santos, E. M.
Sanuy, A.
Sarkar, S.
Saturni, F. G.
Sawangwit, U.
Scherer, A.
Schleicher, B.
Schovanek, P.
Schussler, F.
Schwanke, U.
Sciacca, E.
Scuderi, S.
Seglar Arroyo, M.
Sergijenko, O.
Servillat, M.
Seweryn, K.
Shalchi, A.
Sharma, P.
Shellard, R. C.
Siejkowski, H.
Sinha, A.
Sliusar, V.
Slowikowska, A.
Sokolenko, A.
Sol, H.
Specovius, A.
Spencer, S.
Spiga, D.
Stamerra, A.
Stanič, S.
Starling, R.
Stolarczyk, T.
Straumann, U.
Strišković, J.
Suda, Y.
Świerk, P.
Tagliaferri, G.
Takahashi, H.
Takahashi, M.
Tavecchio, F.
Taylor, L.
Tejedor, L. A.
Temnikov, P.
Terrier, R.
Terzic, T.
Testa, V.
Tian, W.
Tibaldo, L.
Tonev, D.
Torres, D. F.
Torresi, E.
Tosti, L.
Tothill, N.
Tovmassian, G.
Travnicek, P.
Truzzi, S.
Tuossenel, F.
Umana, G.
Vacula, M.
Vagelli, V.
Valentino, M.
Vallage, B.
Vallania, P.
van Eldik, C.
Varner, G. S.
Vassiliev, V.
Vázquez Acosta, M.
Vecchi, M.
Veh, J.
Vercellone, S.
Vergani, S.
Verguilov, V.
Vettolani, G. P.
Viana, A.
Vigorito, C. F.
Vitale, V.
Vorobiov, S.
Vovk, I.
Vuillaume, T.
Wagner, S. J.
Walter, R.
Watson, J.
White, M.
White, R.
Wiemann, R.
Wierzcholska, A.
Will, M.
Williams, D. A.
Wischnewski, R.
Wolter, A.
Yamazaki, R.
Yanagita, S.
Yang, L.
Yoshikoshi, T.
Zacharias, M.
Zaharijas, G.
Zaric, D.
Zavrtanik, M.
Zavrtanik, D.
Zdziarski, A. A.
Zech, A.
Zechlin, H.
Zhdanov, V. I.
Živec, M.
Publication Volume
2021
Metadata
Show full item recordae974a485f413a2113503eed53cd6c53
10.1088/1475-7516/2021/02/048
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagationCentre for Space Research, North-West University, Potchefstroom, 2520, South Africa; Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-8582, Japan; AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, CEA Paris-Saclay, IRFU/DAp, Bat 709, Orme des Merisiers, 91191 Gif-sur-Yvette, France; Centre for Advanced Instrumentation, Dept. of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom; Laboratoire Leprince-Ringuet, École Polytechnique (UMR 7638, CNRS/IN2P3, Institut Polytechnique de Paris), 91128 Palaiseau, France; Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain; Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain; Universidad Nacional Autónoma de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico; Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile; University of Geneva - Département de physique nucléaire et corpusculaire, 24 rue du Général-Dufour, 1211 Genave 4, Switzerland; et al. (Journal of Cosmology and Astroparticle Physics, 2021-02-01)The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.
-
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centreDept. of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE, United Kingdom; Laboratoire Leprince-Ringuet, Ecole Polytechnique (UMR 7638, CNRS/IN2P3, Institut Polytechnique de Paris), 91128 Palaiseau, France; Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, U.S.A.; Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada, Spain; Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Campus Cantoblanco, Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain; Universidad Nacional Autónoma de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico; Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile; University of Geneva - Département de physique nucléaire et corpusculaire, 24 rue du Général-Dufour, 1211 Genève 4, Switzerland; INFN Dipartimento di Scienze Fisiche e Chimiche - Università degli Studi dell'Aquila and Gran Sasso Science Institute, Via Vetoio 1, Viale Crispi 7, 67100 L'Aquila, Italy; Instituto de Astronomia, Geofísico, e Ciências Atmosféricas - Universidade de São Paulo, Cidade Universitária, R. do Matão, 1226, CEP 05508-090, São Paulo, SP, Brazil; et al. (Journal of Cosmology and Astroparticle Physics, 2021-01-01)We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.
-
Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centreDept. of Physics and Centre for Advanced Instrumentation, Durham University, South Road, Durham DH1 3LE, United Kingdom; Laboratoire Leprince-Ringuet, Ecole Polytechnique (UMR 7638, CNRS/IN2P3, Institut Polytechnique de Paris), 91128 Palaiseau, France; Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, U.S.A.; Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada, Spain; Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Campus Cantoblanco, Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain; Universidad Nacional Autónoma de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico; Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile; University of Geneva - Département de physique nucléaire et corpusculaire, 24 rue du Général-Dufour, 1211 Genève 4, Switzerland; INFN Dipartimento di Scienze Fisiche e Chimiche - Università degli Studi dell'Aquila and Gran Sasso Science Institute, Via Vetoio 1, Viale Crispi 7, 67100 L'Aquila, Italy; Instituto de Astronomia, Geofísico, e Ciências Atmosféricas - Universidade de São Paulo, Cidade Universitária, R. do Matão, 1226, CEP 05508-090, São Paulo, SP, Brazil; et al. (Journal of Cosmology and Astroparticle Physics, 2021-01-01)We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.