The VLT-FLAMES Tarantula Survey. Observational evidence for two distinct populations of massive runaway stars in 30 Doradus
dc.contributor | Institute of Astronomy, KU Leuven, Celestijnlaan 200D, 3001, Leuven, Belgium | |
dc.contributor | German Aerospace Center (DLR), Institute for the Protection of Terrestrial Infrastructures, Rathausallee 12, 53757, Sankt Augustin, Germany | |
dc.contributor | Department of Astronomy and Physics, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada | |
dc.contributor | Institute of Astronomy, KU Leuven, Celestijnlaan 200D, 3001, Leuven, Belgium; Royal Observatory of Belgium, Av. Circulaire 3, 1180, Uccle, Belgium | |
dc.contributor | Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 59072-970, Brazil; Programa de Pós-graduação em Física, Universidade do Estado do Rio Grande do Norte, Mossoró, 59610-210, Brazil | |
dc.contributor | Anton Pannenkoek Astronomical Institute, University of Amsterdam, 1090, GE Amsterdam, The Netherlands; Institute of Astronomy, KU Leuven, Celestijnlaan 200D, 3001, Leuven, Belgium | |
dc.contributor | Department of Physics & Astronomy, Hounsfield Road, University of Sheffield, Sheffield, S3 7RH, UK | |
dc.contributor | European Space Agency (ESA), ESA Office, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA | |
dc.contributor | Argelander-Institut für Astronomie, der Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany | |
dc.contributor | Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118, Heldelberg, Germany; Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120, Heidelberg, Germany | |
dc.contributor | Max Planck Institut für Astrophysik, Karl-Schwarschild-Strasse 1, 85748, Garching, Germany; Anton Pannenkoek Astronomical Institute, University of Amsterdam, 1090, GE Amsterdam, The Netherlands | |
dc.contributor | Instituto de Astrofísica de Canarias, C/ Vía Láctea s/n, 38200, La Laguna, Tenerife, Spain | |
dc.contributor | ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain; Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí Franquès 1, 08028, Barcelona, Spain | |
dc.contributor | Centro de Astrobiología (-INTA). Campus ESAC, Camino bajo del Castillo s/n., 28 692, Villanueva de la Cañada, Madrid, Spain | |
dc.contributor | Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA Department of Physics, Columbia University, New York, NY, 10027, USA | |
dc.contributor | Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA | |
dc.contributor | Lennard-Jones Laboratories, Keele University, ST5 5BG, Keele, UK | |
dc.contributor | Armagh Observatory, College Hill, Armagh, BT61 9DG, Northern Ireland, UK | |
dc.contributor.author | Sana, H. | |
dc.contributor.author | Ramírez-Agudelo, O. H. | |
dc.contributor.author | Hénault-Brunet, V. | |
dc.contributor.author | Mahy, L. | |
dc.contributor.author | Almeida, L. A. | |
dc.contributor.author | de Koter, A. | |
dc.contributor.author | Bestenlehner, J. M. | |
dc.contributor.author | Evans, C. J. | |
dc.contributor.author | Langer, N. | |
dc.contributor.author | Schneider, F. R. N. | |
dc.contributor.author | Crowther, P. A. | |
dc.contributor.author | de Mink, S. E. | |
dc.contributor.author | Herrero, A. | |
dc.contributor.author | Lennon, D. J. | |
dc.contributor.author | Gieles, M. | |
dc.contributor.author | Maíz Apellániz, J. | |
dc.contributor.author | Renzo, M. | |
dc.contributor.author | Sabbi, E. | |
dc.contributor.author | van Loon, J. Th. | |
dc.contributor.author | Vink, J. S. | |
dc.date.accessioned | 2024-02-02T13:31:30Z | |
dc.date.available | 2024-02-02T13:31:30Z | |
dc.date.issued | 2022-12-01T00:00:00Z | |
dc.identifier.doi | 10.1051/0004-6361/202244677 | |
dc.identifier.doi | 10.48550/arXiv.2211.13476 | |
dc.identifier.other | 2022arXiv221113476S | |
dc.identifier.other | astro-ph.SR | |
dc.identifier.other | astro-ph.GA | |
dc.identifier.other | arXiv:2211.13476 | |
dc.identifier.other | 10.48550/arXiv.2211.13476 | |
dc.identifier.other | 2022A&A...668L...5S | |
dc.identifier.other | 10.1051/0004-6361/202244677 | |
dc.identifier.other | 2022arXiv221113476S | |
dc.identifier.other | - | |
dc.identifier.other | 0000-0003-0688-7987 | |
dc.identifier.other | 0000-0002-3817-6402 | |
dc.identifier.other | 0000-0002-1198-3167 | |
dc.identifier.other | 0000-0002-0859-5139 | |
dc.identifier.other | 0000-0002-5965-1022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.14302/1581 | |
dc.description.abstract | Context. The origin of massive runaway stars is an important unsolved problem in astrophysics. Two main scenarios have been proposed, namely: dynamical ejection or release from a binary at the first core collapse. However, their relative contribution remains heavily debated. <BR /> Aims: Taking advantage of two large spectroscopic campaigns towards massive stars in 30 Doradus, we aim to provide observational constraints on the properties of the O-type runaway population in the most massive active star-forming region in the Local Group. <BR /> Methods: We used radial velocity measurements of the O-type star populations in 30 Doradus obtained by the VLT-FLAMES Tarantula Survey and the Tarantula Massive Binary Monitoring to identify single and binary O-type runaways. Here, we discuss the rotational properties of the detected runaways and qualitatively compare the observations with expectations of ejection scenarios. <BR /> Results: We identified 23 single and one binary O-type runaway objects, most of them located outside the main star-forming regions in 30 Doradus. We find an overabundance of rapid rotators (v<SUB>e</SUB> sin i > 200 km s<SUP>−1</SUP>) among the runaway population, thus providing an explanation for the observed overabundance of rapidly rotating stars in the 30 Doradus field. Considerations of the projected rotation rates and runaway line-of-sight velocities reveal a conspicuous absence of rapidly rotating (v<SUB>e</SUB> sin i > 210 km s<SUP>−1</SUP>), fast-moving (v<SUB>los</SUB> > 60 km s<SUP>−1</SUP>) runaway stars in our sample, strongly suggesting the presence of two different populations of runaway stars: a population of rapidly spinning but slowly moving runaway stars and a population of fast-moving but slowly rotating ones. These are detected with a ratio close to 2:1 in our sample. <BR /> Conclusions: We argue that slowly moving but rapidly spinning runaway stars result from binary ejections, while rapidly moving but slowly spinning runaways could result from dynamical ejections. Given that detection biases will more strongly impact the slow-moving runaway population, our results suggest that the binary evolution scenario dominates the current massive runaway star population in 30 Doradus. | |
dc.publisher | Astronomy and Astrophysics | |
dc.title | The VLT-FLAMES Tarantula Survey. Observational evidence for two distinct populations of massive runaway stars in 30 Doradus | |
dc.type | article | |
dc.source.journal | A&A | |
dc.source.journal | A&A...668 | |
dc.source.volume | 668 | |
refterms.dateFOA | 2024-02-02T13:31:30Z | |
dc.identifier.bibcode | 2022A&A...668L...5S |