Show simple item record

dc.contributorDepartment of Physics & Astronomy, University of Sheffield, United Kingdom
dc.contributorDepartment of Astronomy, University of Michigan, Ann Arbor, USA
dc.contributorUK Astronomy Technology Centre, Royal Observatory, Edinburgh, United Kingdom
dc.contributorArmagh Observatory, United Kingdom
dc.contributorESO
dc.contributor.authorCrowther, P. A.
dc.contributor.authorCastro, N.
dc.contributor.authorEvans, C. J.
dc.contributor.authorVink, J. S.
dc.contributor.authorMelnick, J.
dc.contributor.authorSelman, F.
dc.date.accessioned2024-02-21T11:03:55Z
dc.date.available2024-02-21T11:03:55Z
dc.date.issued2017-12-01T00:00:00Z
dc.identifier.doi10.18727/0722-6691/5053
dc.identifier.other2017Msngr.170...40C
dc.identifier.other10.18727/0722-6691/5053
dc.identifier.other-
dc.identifier.urihttp://hdl.handle.net/20.500.14302/1954
dc.description.abstractWe provide an overview of Science Verification MUSE observations of NGC 2070, the central region of the Tarantula Nebula in the Large Magellanic Cloud. Integral-field spectroscopy of the central 2 × 2 arcminute region provides the first complete spectroscopic census of its massive star content, nebular conditions and kinematics. The star formation surface density of NGC 2070 is reminiscent of the intense star-forming knots of high-redshift galaxies, with nebular conditions similar to low-redshift Green Pea galaxies, some of which are Lyman continuum leakers. Uniquely, MUSE permits the star formation history of NGC 2070 to be studied with both spatially resolved and integrated- light spectroscopy.
dc.publisherThe Messenger
dc.titleDissecting the Core of the Tarantula Nebula with MUSE
dc.typearticle
dc.source.journalMsngr
dc.source.journalMsngr.170
dc.source.volume170
refterms.dateFOA2024-02-21T11:03:55Z
dc.identifier.bibcode2017Msngr.170...40C


Files in this item

Thumbnail
Name:
2017Msngr.170...40C.pdf
Size:
3.097Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record