Now showing items 1-20 of 860

    • Multiwavelength High-resolution Observations of Chromospheric Swirls in the Quiet Sun

      Centre of Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, UK; ASI—Italian Space Agency, Via del Politecnico snc, Rome, Italy ; INAF-OAR National Institute for Astrophysics, I-00078 Monte Porzio Catone (RM), Italy; High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder CO 80307-3000, USA; Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK; Department of Mathematics & Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK; Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315, Oslo, Norway ; Rosseland Centre for Solar Physics, University of Oslo, P.O. Box 1029 Blindern, NO-0315, Oslo, Norway; Shetye, Juie; Verwichte, Erwin; Stangalini, Marco; Judge, Philip G.; et al. (The Astrophysical Journal, 2019-08-01)
      We report observations of small-scale swirls seen in the solar chromosphere. They are typically 2 Mm in diameter and last around 10 minutes. Using spectropolarimetric observations obtained by the CRisp Imaging Spectro-Polarimeter at the Swedish 1 m Solar Telescope, we identify and study a set of swirls in chromospheric Ca II 8542 Å and Hα lines as well as in the photospheric Fe I line. We have three main areas of focus. First, we compare the appearance, morphology, dynamics, and associated plasma parameters between the Ca II and Hα channels. Rotation and expansion of the chromospheric swirl pattern are explored using polar plots. Second, we explore the connection to underlying photospheric magnetic concentration (MC) dynamics. MCs are tracked using the SWAMIS tracking code. The swirl center and MC remain cospatial and share similar periods of rotation. Third, we elucidate the role swirls play in modifying chromospheric acoustic oscillations and found a temporary reduction in wave period during swirls. We use cross-correlation wavelets to examine the change in period and phase relations between different wavelengths. The physical picture that emerges is that a swirl is a flux tube that extends above an MC in a downdraft region in an intergranular lane. The rotational motion of the MC matches the chromospheric signatures. We could not determine whether a swirl is a gradual response to the photospheric motion or an actual propagating Alfvénic wave.
    • Photospheric Observations of Surface and Body Modes in Solar Magnetic Pores

      Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK ; Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK;; Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK; Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast, BT7 1NN, UK ; Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA; Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK; Astrophysics Research Centre, School of Mathematics and Physics, Queen's University, Belfast, BT7 1NN, UK; School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, UK; Armagh Observatory & Planetarium, College Hill, Armagh, BT61 9DG, UK; Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, USA; Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK; Debrecen Heliophysical Observatory (DHO), Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, 4010 Debrecen, P.O. Box 30, Hungary; Keys, Peter H.; et al. (The Astrophysical Journal, 2018-04-01)
      Over the past number of years, great strides have been made in identifying the various low-order magnetohydrodynamic wave modes observable in a number of magnetic structures found within the solar atmosphere. However, one aspect of these modes that has remained elusive, until now, is their designation as either surface or body modes. This property has significant implications for how these modes transfer energy from the waveguide to the surrounding plasma. Here, for the first time to our knowledge, we present conclusive, direct evidence of these wave characteristics in numerous pores that were observed to support sausage modes. As well as outlining methods to detect these modes in observations, we make estimates of the energies associated with each mode. We find surface modes more frequently in the data, as well as that surface modes appear to carry more energy than those displaying signatures of body modes. We find frequencies in the range of ∼2-12 mHz, with body modes as high as 11 mHz, but we do not find surface modes above 10 mHz. It is expected that the techniques we have applied will help researchers search for surface and body signatures in other modes and in differing structures from those presented here.
    • X-Shooting ULLYSES: Massive Stars at Low Metallicity

      Armagh Observatory and Planetarium, UK; Department of Physics & Astronomy, University of Sheffield, UK; Space Telescope Science Institute, Baltimore, USA; Centre for Astrobiology (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain; Montpellier Universe and Particles Laboratory, Montpellier University, France; Las Campanas Observatory, Carnegie Observatories, Chile; Institute for Physics and Astronomy, University of Potsdam, Germany; Department of Physics, University of Montreal, Canada; Penn State Scranton, Dunmore, PA, USA; Astronomy Centre, Heidelberg University, Germany; et al. (The Messenger, 2024-03-01)
      The Hubble Space Telescope has devoted 500 orbits to observing 250 massive stars with low metallicity in the ultraviolet (UV) range within the framework of the ULLYSES program. The X-Shooting ULLYSES (XShootU) project enhances the legacy value of this UV dataset by providing high-quality optical and near-infrared spectra, which are acquired using the wide-wavelength- coverage X-shooter spectrograph at ESO's Very Large Telescope. XShootU emphasises the importance of combining UV with optical spectra for the consistent determination of key stellar parameters such as effective temperature, surface gravity, luminosity, abundances, and wind characteristics including mass-loss rates as a function of metallicity. Since uncertainties in these parameters have implications across various branches of astrophysics, the data and modelling generated by the XShootU project are poised to significantly advance our understanding of massive stars at low metallicity. This is particularly crucial for confidently interpreting James Webb Space Telescope (JWST) data of the earliest stellar generations, making XShootU a unique resource for comprehending individual spectra of low-metallicity stars.
    • X-Shooting ULLYSES: Massive Stars at Low Metallicity

      Armagh Observatory and Planetarium, UK; Department of Physics & Astronomy, University of Sheffield, UK; Space Telescope Science Institute, Baltimore, USA; Centre for Astrobiology (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain; Montpellier Universe and Particles Laboratory, Montpellier University, France; Las Campanas Observatory, Carnegie Observatories, Chile; Institute for Physics and Astronomy, University of Potsdam, Germany; Department of Physics, University of Montreal, Canada; Penn State Scranton, Dunmore, PA, USA; Astronomy Centre, Heidelberg University, Germany; et al. (The Messenger, 2024-03-01)
      The Hubble Space Telescope has devoted 500 orbits to observing 250 massive stars with low metallicity in the ultraviolet (UV) range within the framework of the ULLYSES program. The X-Shooting ULLYSES (XShootU) project enhances the legacy value of this UV dataset by providing high-quality optical and near-infrared spectra, which are acquired using the wide-wavelength- coverage X-shooter spectrograph at ESO's Very Large Telescope. XShootU emphasises the importance of combining UV with optical spectra for the consistent determination of key stellar parameters such as effective temperature, surface gravity, luminosity, abundances, and wind characteristics including mass-loss rates as a function of metallicity. Since uncertainties in these parameters have implications across various branches of astrophysics, the data and modelling generated by the XShootU project are poised to significantly advance our understanding of massive stars at low metallicity. This is particularly crucial for confidently interpreting James Webb Space Telescope (JWST) data of the earliest stellar generations, making XShootU a unique resource for comprehending individual spectra of low-metallicity stars.
    • X-Shooting ULLYSES: Massive Stars at Low Metallicity

      Armagh Observatory and Planetarium, UK; Department of Physics & Astronomy, University of Sheffield, UK; Space Telescope Science Institute, Baltimore, USA; Centre for Astrobiology (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain; Montpellier Universe and Particles Laboratory, Montpellier University, France; Las Campanas Observatory, Carnegie Observatories, Chile; Institute for Physics and Astronomy, University of Potsdam, Germany; Department of Physics, University of Montreal, Canada; Penn State Scranton, Dunmore, PA, USA; Astronomy Centre, Heidelberg University, Germany; et al. (The Messenger, 2024-03-01)
      The Hubble Space Telescope has devoted 500 orbits to observing 250 massive stars with low metallicity in the ultraviolet (UV) range within the framework of the ULLYSES program. The X-Shooting ULLYSES (XShootU) project enhances the legacy value of this UV dataset by providing high-quality optical and near-infrared spectra, which are acquired using the wide-wavelength- coverage X-shooter spectrograph at ESO's Very Large Telescope. XShootU emphasises the importance of combining UV with optical spectra for the consistent determination of key stellar parameters such as effective temperature, surface gravity, luminosity, abundances, and wind characteristics including mass-loss rates as a function of metallicity. Since uncertainties in these parameters have implications across various branches of astrophysics, the data and modelling generated by the XShootU project are poised to significantly advance our understanding of massive stars at low metallicity. This is particularly crucial for confidently interpreting James Webb Space Telescope (JWST) data of the earliest stellar generations, making XShootU a unique resource for comprehending individual spectra of low-metallicity stars.
    • Polarimetric view of the changing type Seyfert galaxy ESO 362-G018.

      Centro de Astrobiología (CSIC-INTA), Dep. de Astrofíica, Villanueva de la Cañada, E-28692, Madrid, Spain; Armagh Observatory, College Hill, Armagh BT61 9 DG, UK; Institut d'Astrophysique et de Géophysique, Université de Liége, Allée du 6 Août 19c, B5c, 4000 Liége, Belgium; Agís-González, B.; Bagnulo, S.; Hutsemékers, D.; Montesinos, B.; Miniutti, G.; Sanfrutos, M. (Highlights on Spanish Astrophysics IX, 2017-03-01)
      ESO362-G018 is an active galactic nucleus (AGN) which is classified as a Seyfert 1.5 galaxy e.g. by Bennert et al. (2006), (black data set on figure 1). However, Parisi et. al (2009) found an optical spectrum of this source which was taken during the 6dF Galaxy Survey, but it does not show the broad Balmer lines required to classify it as Seyfert 1 galaxy (red data set on figure 1). On the other hand, the results obtained by Agis-Gonzalez et al. (2014❩ in a X-ray analysis of this same source reveal that the inclination of ESO362- G018 i = 53° ± 5° is consistent with the picture of an AGN looked through the upper layers of a clumpy, dusty torus. Thus, according to the Unification Models of AGN and the clumpy nature of the torus, our interpretation of the different spectra is the following one. On 30th of January of 2003 (when the spectrum belonging to the 6dF survey was obtained), our line of sight intercepted a (or several aligned) torus clump(s) with much greater column density than its environment. Accordingly, the nucleus and the broad line region (❨BLR)❩ would be obscured. This allowed only the narrow emission lines to emerge from the narrow line region (NRL). Otherwise, on 18th of September of 2004 (when the spectrum by Bennert et al. 2006 was obtained) there is no clump to intercept and the BLR is not obscured so that the broad Balmer emission lines could be detected.
    • X-Shooting ULLYSES: Massive Stars at Low Metallicity

      Armagh Observatory and Planetarium, UK; Department of Physics & Astronomy, University of Sheffield, UK; Space Telescope Science Institute, Baltimore, USA; Centre for Astrobiology (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain; Montpellier Universe and Particles Laboratory, Montpellier University, France; Las Campanas Observatory, Carnegie Observatories, Chile; Institute for Physics and Astronomy, University of Potsdam, Germany; Department of Physics, University of Montreal, Canada; Penn State Scranton, Dunmore, PA, USA; Astronomy Centre, Heidelberg University, Germany; et al. (The Messenger, 2024-03-01)
      The Hubble Space Telescope has devoted 500 orbits to observing 250 massive stars with low metallicity in the ultraviolet (UV) range within the framework of the ULLYSES program. The X-Shooting ULLYSES (XShootU) project enhances the legacy value of this UV dataset by providing high-quality optical and near-infrared spectra, which are acquired using the wide-wavelength- coverage X-shooter spectrograph at ESO's Very Large Telescope. XShootU emphasises the importance of combining UV with optical spectra for the consistent determination of key stellar parameters such as effective temperature, surface gravity, luminosity, abundances, and wind characteristics including mass-loss rates as a function of metallicity. Since uncertainties in these parameters have implications across various branches of astrophysics, the data and modelling generated by the XShootU project are poised to significantly advance our understanding of massive stars at low metallicity. This is particularly crucial for confidently interpreting James Webb Space Telescope (JWST) data of the earliest stellar generations, making XShootU a unique resource for comprehending individual spectra of low-metallicity stars.
    • X-Shooting ULLYSES: Massive Stars at Low Metallicity

      Armagh Observatory and Planetarium, UK; Department of Physics & Astronomy, University of Sheffield, UK; Space Telescope Science Institute, Baltimore, USA; Centre for Astrobiology (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain; Montpellier Universe and Particles Laboratory, Montpellier University, France; Las Campanas Observatory, Carnegie Observatories, Chile; Institute for Physics and Astronomy, University of Potsdam, Germany; Department of Physics, University of Montreal, Canada; Penn State Scranton, Dunmore, PA, USA; Astronomy Centre, Heidelberg University, Germany; et al. (The Messenger, 2024-03-01)
      The Hubble Space Telescope has devoted 500 orbits to observing 250 massive stars with low metallicity in the ultraviolet (UV) range within the framework of the ULLYSES program. The X-Shooting ULLYSES (XShootU) project enhances the legacy value of this UV dataset by providing high-quality optical and near-infrared spectra, which are acquired using the wide-wavelength- coverage X-shooter spectrograph at ESO's Very Large Telescope. XShootU emphasises the importance of combining UV with optical spectra for the consistent determination of key stellar parameters such as effective temperature, surface gravity, luminosity, abundances, and wind characteristics including mass-loss rates as a function of metallicity. Since uncertainties in these parameters have implications across various branches of astrophysics, the data and modelling generated by the XShootU project are poised to significantly advance our understanding of massive stars at low metallicity. This is particularly crucial for confidently interpreting James Webb Space Telescope (JWST) data of the earliest stellar generations, making XShootU a unique resource for comprehending individual spectra of low-metallicity stars.
    • Search for Stellar Companions of Exoplanet Host Stars with AstraLux/CAHA 2.2 m

      Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2, D-07745 Jena, Germany; Armagh Observatory and Planetarium, College Hill, BT61 9DB Armagh, UK; Queen's University Belfast, School of Mathematics and Physics, Main Physics Building,University Road, BT7 1NN Belfast, UK; Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2, D-07745 Jena, Germany; University of Galway, University Road, H91 TK33 Galway, Ireland; Research School of Astronomy & Astrophysics, Australian National University, Mount Stromlo Observatory Cotter Road, Weston Creek, Canberra, ACT, 2611, Australia; ARC Center of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Mount Stromlo Road, Stromlo, ACT, 2611, Australia; Instituto de Astrofísica de Andalucía CSIC, Glorieta de la Astronomia, Apartado 3004,18080 Granada, Spain; Schlagenhauf, Saskia; Mugrauer, Markus; Ginski, Christian; Buder, Sven; Fernández, Matilde; et al. (Monthly Notices of the Royal Astronomical Society, 2024-04-01)
      Stellar multiplicity is a key aspect of exoplanet diversity, as the presence of more than one star in a planetary system can have both devastating and positive effects on its formation and evolution. In this paper, we present the results of a Lucky Imaging survey of 212 exoplanet host stars performed with AstraLux at the 2.2 m telescope of the Centro Astronómico Hispano en Andalucía. The survey includes data from seven observing epochs between August 2015 and September 2020, and data for individual targets from four earlier observing epochs. The targets of this survey are nearby, bright, solar-like stars with high proper motions. In total, we detected 46 co-moving companions of 43 exoplanet host stars. Accordingly, this survey shows that the minimum multiplicity rate of exoplanet host stars is $20 \pm 3~{\rm per\ cent}$. In total, 33 binary and 10 hierarchical triple star systems with exoplanets have been identified. All companions were found to have a common proper motion with the observed exoplanet host stars, and with our astrometry we even find evidence of orbital motion for 28 companions. For all targets, we determine the detection limit and explore the detection space for possible additional companions of these stars. Based on the reached detection limit, additional co-moving companions beyond the detected ones can be excluded around all observed exoplanet host stars. The increasing number of exoplanets discovered in multiple stellar systems suggests that the formation of planets in such systems is by no means rare, but common. Therefore, our study highlights the need to consider stellar multiplicity in future studies of exoplanet habitability.
    • A study of galactic plane Planck galactic cold clumps observed by SCOPE and the JCMT plane survey

      Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DB, UK; Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, People's Republic of China; Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, iC2, 146 Brownlow Hill. Liverpool, L3 5RF, UK; NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada; Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejon 34055, Republic of Korea; University of Science and Technology, Korea (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China; Key Laboratory of Radio Astronomy, Chinese Academy of Science, Nanjing 210008, China; Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Nobeyama Radio Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan; Astronomical Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      We have investigated the physical properties of Planck Galactic Cold Clumps (PGCCs) located in the Galactic Plane, using the JCMT Plane Survey (JPS) and the SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE) survey. By utilising a suite of molecular-line surveys, velocities and distances were assigned to the compact sources within the PGCCs, placing them in a Galactic context. The properties of these compact sources show no large-scale variations with Galactic environment. Investigating the star-forming content of the sample, we find that the luminosity-to-mass ratio (L/M) is an order of magnitude lower than in other Galactic studies, indicating that these objects are hosting lower levels of star formation. Finally, by comparing ATLASGAL sources that are associated or are not associated with PGCCs, we find that those associated with PGCCs are typically colder, denser, and have a lower L/M ratio, hinting that PGCCs are a distinct population of Galactic Plane sources.
    • Search for Stellar Companions of Exoplanet Host Stars with AstraLux/CAHA 2.2 m

      Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2, D-07745 Jena, Germany; Armagh Observatory and Planetarium, College Hill, BT61 9DB Armagh, UK; Queen's University Belfast, School of Mathematics and Physics, Main Physics Building,University Road, BT7 1NN Belfast, UK; Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2, D-07745 Jena, Germany; University of Galway, University Road, H91 TK33 Galway, Ireland; Research School of Astronomy & Astrophysics, Australian National University, Mount Stromlo Observatory Cotter Road, Weston Creek, Canberra, ACT, 2611, Australia; ARC Center of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Mount Stromlo Road, Stromlo, ACT, 2611, Australia; Instituto de Astrofísica de Andalucía CSIC, Glorieta de la Astronomia, Apartado 3004,18080 Granada, Spain; Schlagenhauf, Saskia; Mugrauer, Markus; Ginski, Christian; Buder, Sven; Fernández, Matilde; et al. (Monthly Notices of the Royal Astronomical Society, 2024-04-01)
      Stellar multiplicity is a key aspect of exoplanet diversity, as the presence of more than one star in a planetary system can have both devastating and positive effects on its formation and evolution. In this paper, we present the results of a Lucky Imaging survey of 212 exoplanet host stars performed with AstraLux at the 2.2 m telescope of the Centro Astronómico Hispano en Andalucía. The survey includes data from seven observing epochs between August 2015 and September 2020, and data for individual targets from four earlier observing epochs. The targets of this survey are nearby, bright, solar-like stars with high proper motions. In total, we detected 46 co-moving companions of 43 exoplanet host stars. Accordingly, this survey shows that the minimum multiplicity rate of exoplanet host stars is $20 \pm 3~{\rm per\ cent}$. In total, 33 binary and 10 hierarchical triple star systems with exoplanets have been identified. All companions were found to have a common proper motion with the observed exoplanet host stars, and with our astrometry we even find evidence of orbital motion for 28 companions. For all targets, we determine the detection limit and explore the detection space for possible additional companions of these stars. Based on the reached detection limit, additional co-moving companions beyond the detected ones can be excluded around all observed exoplanet host stars. The increasing number of exoplanets discovered in multiple stellar systems suggests that the formation of planets in such systems is by no means rare, but common. Therefore, our study highlights the need to consider stellar multiplicity in future studies of exoplanet habitability.
    • A study of galactic plane Planck galactic cold clumps observed by SCOPE and the JCMT plane survey

      Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DB, UK; Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, People's Republic of China; Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, iC2, 146 Brownlow Hill. Liverpool, L3 5RF, UK; NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada; Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejon 34055, Republic of Korea; University of Science and Technology, Korea (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China; Key Laboratory of Radio Astronomy, Chinese Academy of Science, Nanjing 210008, China; Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Nobeyama Radio Observatory, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan; Astronomical Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      We have investigated the physical properties of Planck Galactic Cold Clumps (PGCCs) located in the Galactic Plane, using the JCMT Plane Survey (JPS) and the SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE) survey. By utilising a suite of molecular-line surveys, velocities and distances were assigned to the compact sources within the PGCCs, placing them in a Galactic context. The properties of these compact sources show no large-scale variations with Galactic environment. Investigating the star-forming content of the sample, we find that the luminosity-to-mass ratio (L/M) is an order of magnitude lower than in other Galactic studies, indicating that these objects are hosting lower levels of star formation. Finally, by comparing ATLASGAL sources that are associated or are not associated with PGCCs, we find that those associated with PGCCs are typically colder, denser, and have a lower L/M ratio, hinting that PGCCs are a distinct population of Galactic Plane sources.
    • Modelling Time-dependent Convective Penetration in 1D Stellar Evolution

      Department of Astrophysics/IMAPP, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands; Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium; Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, 1800 Sherman Avenue, Evanston, IL 60201, USA; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA; Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA; Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA; Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA; Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, UK; Johnston, Cole; Michielsen, Mathias; Anders, Evan H.; et al. (The Astrophysical Journal, 2024-04-01)
      One-dimensional stellar evolution calculations produce uncertain predictions for quantities like the age, core mass, core compactness, and nucleosynthetic yields; a key source of uncertainty is the modeling of interfaces between regions that are convectively stable and those that are not. Theoretical and numerical work has demonstrated that there should be numerous processes adjacent to the convective boundary that induce chemical and angular momentum transport, as well as modify the thermal structure of the star. One such process is called convective penetration, wherein vigorous convection extends beyond the nominal convective boundary and alters both the composition and thermal structure. In this work, we incorporate the process of convective penetration in stellar evolution calculations using the stellar evolution software instrument MESA. We implement convective penetration according to the description presented by Anders et al. to to calculate a grid of models from the pre-main sequence to helium core depletion. The extent of the convective penetration zone is self-consistently calculated at each time step without introducing new free parameters. We find both a substantial penetration zone in all models with a convective core and observable differences to global stellar properties such as the luminosity and radius. We present how the predicted radial extent of the penetration zone scales with the total stellar mass, age, and metallicity of the star. We discuss our results in the context of existing numerical and observational studies.
    • NGTS-28Ab: a short period transiting brown dwarf

      School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK; European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands; European Southern Observatory, Karl-Schwarzschildstr. 2, D-85748 Garching bei München, Germany; Département d'astronomie, Université de Genéve, 51 chemin Pegasi, CH-1290 Sauverny, Switzerland; NASA Ames Research Center, Moffett Field, CA 94035, USA; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; NASA Exoplanet Science Institute, IPAC, California Institute of Technology, Pasadena, CA 91125, USA; NASA Ames Research Center, Moffett Field, CA 94035, USA; Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA; Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19C, B-4000 Liège, Belgium; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200, La Laguna, Tenerife, Spain; Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile; Centro de Astrofísica y Tecnologías Afines (CATA), Casilla 36-D, Santiago, Chile; Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      We report the discovery of a brown dwarf orbiting a M1 host star. We first identified the brown dwarf within the Next Generation Transit Survey data, with supporting observations found in TESS sectors 11 and 38. We confirmed the discovery with follow-up photometry from the South African Astronomical Observatory, SPECULOOS-S, and TRAPPIST-S, and radial velocity measurements from HARPS, which allowed us to characterize the system. We find an orbital period of ~1.25 d, a mass of $69.0^{+5.3}_{-4.8}$ M<SUB>J</SUB>, close to the hydrogen burning limit, and a radius of 0.95 ± 0.05 R<SUB>J</SUB>. We determine the age to be &gt;0.5 Gyr, using model isochrones, which is found to be in agreement with spectral energy distribution fitting within errors. NGTS-28Ab is one of the shortest period systems found within the brown dwarf desert, as well as one of the highest mass brown dwarfs that transits an M dwarf. This makes NGTS-28Ab another important discovery within this scarcely populated region.
    • NGTS-28Ab: a short period transiting brown dwarf

      School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK; European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands; European Southern Observatory, Karl-Schwarzschildstr. 2, D-85748 Garching bei München, Germany; Département d'astronomie, Université de Genéve, 51 chemin Pegasi, CH-1290 Sauverny, Switzerland; NASA Ames Research Center, Moffett Field, CA 94035, USA; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; NASA Exoplanet Science Institute, IPAC, California Institute of Technology, Pasadena, CA 91125, USA; NASA Ames Research Center, Moffett Field, CA 94035, USA; Bay Area Environmental Research Institute, Moffett Field, CA 94035, USA; Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19C, B-4000 Liège, Belgium; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200, La Laguna, Tenerife, Spain; Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile; Centro de Astrofísica y Tecnologías Afines (CATA), Casilla 36-D, Santiago, Chile; Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      We report the discovery of a brown dwarf orbiting a M1 host star. We first identified the brown dwarf within the Next Generation Transit Survey data, with supporting observations found in TESS sectors 11 and 38. We confirmed the discovery with follow-up photometry from the South African Astronomical Observatory, SPECULOOS-S, and TRAPPIST-S, and radial velocity measurements from HARPS, which allowed us to characterize the system. We find an orbital period of ~1.25 d, a mass of $69.0^{+5.3}_{-4.8}$ M<SUB>J</SUB>, close to the hydrogen burning limit, and a radius of 0.95 ± 0.05 R<SUB>J</SUB>. We determine the age to be &gt;0.5 Gyr, using model isochrones, which is found to be in agreement with spectral energy distribution fitting within errors. NGTS-28Ab is one of the shortest period systems found within the brown dwarf desert, as well as one of the highest mass brown dwarfs that transits an M dwarf. This makes NGTS-28Ab another important discovery within this scarcely populated region.
    • The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

      Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; SRON - Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, 38205 La Laguna, Santa Cruz de Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain; Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France; INAF - Osservatorio Astronomico di Brera, Via Brera, 28, 20121 Milano, Italy; Aix Marseille Univ, CNRS, CNES, LAM, Laboratoire d'Astrophysique de Marseille, 13388 Marseille, France; INAF - Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, 35122 Padova, Italy; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ~ 5000, or two shorter ranges at $R\sim 20\, 000$. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ~3 million stars and detailed abundances for ~1.5 million brighter field and open-cluster stars; (ii) survey ~0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ~400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z &lt; 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ${\sim} 25\, 000$ field galaxies at 0.3 ≲ z ≲ 0.7; (vii) study the cosmic evolution of accretion and star formation using &gt;1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z &gt; 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
    • The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

      Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; SRON - Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, 38205 La Laguna, Santa Cruz de Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain; Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France; INAF - Osservatorio Astronomico di Brera, Via Brera, 28, 20121 Milano, Italy; Aix Marseille Univ, CNRS, CNES, LAM, Laboratoire d'Astrophysique de Marseille, 13388 Marseille, France; INAF - Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, 35122 Padova, Italy; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ~ 5000, or two shorter ranges at $R\sim 20\, 000$. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ~3 million stars and detailed abundances for ~1.5 million brighter field and open-cluster stars; (ii) survey ~0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ~400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z &lt; 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ${\sim} 25\, 000$ field galaxies at 0.3 ≲ z ≲ 0.7; (vii) study the cosmic evolution of accretion and star formation using &gt;1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z &gt; 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
    • The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

      Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; SRON - Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, 38205 La Laguna, Santa Cruz de Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain; Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France; INAF - Osservatorio Astronomico di Brera, Via Brera, 28, 20121 Milano, Italy; Aix Marseille Univ, CNRS, CNES, LAM, Laboratoire d'Astrophysique de Marseille, 13388 Marseille, France; INAF - Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, 35122 Padova, Italy; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ~ 5000, or two shorter ranges at $R\sim 20\, 000$. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ~3 million stars and detailed abundances for ~1.5 million brighter field and open-cluster stars; (ii) survey ~0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ~400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z &lt; 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ${\sim} 25\, 000$ field galaxies at 0.3 ≲ z ≲ 0.7; (vii) study the cosmic evolution of accretion and star formation using &gt;1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z &gt; 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
    • The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

      Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; SRON - Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands; Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Landleven 12, 9747 AD Groningen, The Netherlands; Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK; RALSpace, STFC, Harwell, Didcot OX11 0QX, UK; Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, 38205 La Laguna, Santa Cruz de Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain; Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK; Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France; INAF - Osservatorio Astronomico di Brera, Via Brera, 28, 20121 Milano, Italy; Aix Marseille Univ, CNRS, CNES, LAM, Laboratoire d'Astrophysique de Marseille, 13388 Marseille, France; INAF - Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, 35122 Padova, Italy; et al. (Monthly Notices of the Royal Astronomical Society, 2024-05-01)
      WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ~ 5000, or two shorter ranges at $R\sim 20\, 000$. After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ~3 million stars and detailed abundances for ~1.5 million brighter field and open-cluster stars; (ii) survey ~0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey ~400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z &lt; 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in ${\sim} 25\, 000$ field galaxies at 0.3 ≲ z ≲ 0.7; (vii) study the cosmic evolution of accretion and star formation using &gt;1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z &gt; 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
    • The S-PLUS Fornax Project (S+FP): A first 12-band glimpse of the Fornax galaxy cluster

      Instituto de Astrofísica de La Plata, CONICET-UNLP, Paseo del Bosque s/n, B1900FWA, Argentina; Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, Argentina; Valongo Observatory, Federal University of Rio de Janeiro, Ladeira Pedro Antonio 43, Saude Rio de Janeiro, RJ, 20080-090, Brazil; Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil; Instituto de Astrofísica de La Plata, CONICET-UNLP, Paseo del Bosque s/n, B1900FWA, Argentina; Departamento de Física - CFM - Universidade Federal de Santa Catarina, PO BOx 476, 88040-900, Florianópolis, SC, Brazil; Valongo Observatory, Federal University of Rio de Janeiro, Ladeira Pedro Antonio 43, Saude Rio de Janeiro, RJ, 20080-090, Brazil; Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, IAG, Rua do Matão 1226, Sao Paulo, SP, Brazil; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales y Ciclo Básico Común, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires, Argentina; Cambridge Survey Astronomical Unit (CASU), Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK; Observatório Nacional, Rua General José Cristino, 77, São Cristóvão, 20921-400 Rio de Janeiro, RJ, Brazil; et al. (Monthly Notices of the Royal Astronomical Society, 2024-03-01)
      The Fornax galaxy cluster is the richest nearby (D ~ 20 Mpc) galaxy association in the southern sky. As such, it provides a wealth of oportunities to elucidate on the processes where environment holds a key role in transforming galaxies. Although it has been the focus of many studies, Fornax has never been explored with contiguous homogeneous wide-field imaging in 12 photometric narrow- and broad-bands like those provided by the Southern Photometric Local Universe Survey (S-PLUS). In this paper we present the S-PLUS Fornax Project (S+FP) that aims to comprehensively analyse the galaxy content of the Fornax cluster using S-PLUS. Our data set consists of 106 S-PLUS wide-field frames (FoV~1.4 ×1.4 deg<SUP>2</SUP>) observed in five SDSS-like ugriz broad-bands and seven narrow-bands covering specific spectroscopic features like [OII], CaII H+K, Hδ, G-band, Mg b triplet, Hα, and the CaII triplet. Based on S-PLUS specific automated photometry, aimed at correctly detecting Fornax galaxies and globular clusters in S-PLUS images, our dataset provides the community with catalogues containing homogeneous 12-band photometry for ~3 × 10<SUP>6</SUP> resolved and unresolved objects within a region extending over ~208 deg<SUP>2</SUP> (~5 R<SUB>vir</SUB> in RA) around Fornax' central galaxy, NGC 1399. We further explore the EAGLE and ILLUSTRISTNG cosmological simulations to identify 45 Fornax-like clusters and generate mock images on all 12 S-PLUS bands of these structures down to galaxies with M<SUB>⋆</SUB> ≥ 10<SUP>8</SUP> M<SUB>⊙</SUB>. The S+FP dataset we put forward in this first paper of a series will enable a variety of studies some of which are briefly presented.